A085870
Array defined by T(i,1)=2^i-1, T(1,j)=2^j-1, T(i,j)=T(i-1,j)+T(i-1,j-1) read by antidiagonals.
Original entry on oeis.org
1, 3, 3, 7, 4, 7, 15, 7, 10, 15, 31, 14, 14, 22, 31, 63, 29, 21, 32, 46, 63, 125, 60, 35, 46, 68, 94, 125, 249, 123, 64, 67, 100, 140, 188, 249, 497, 248, 124, 102, 146, 208, 282, 374, 497, 993, 497, 247, 166, 213, 308, 422, 562, 746, 993, 1985, 994, 495, 290, 315, 454, 630, 844, 1120, 1490, 1985
Offset: 1
A103457
a(n) = 3^n + 1 - 0^n.
Original entry on oeis.org
1, 4, 10, 28, 82, 244, 730, 2188, 6562, 19684, 59050, 177148, 531442, 1594324, 4782970, 14348908, 43046722, 129140164, 387420490, 1162261468, 3486784402, 10460353204, 31381059610, 94143178828, 282429536482, 847288609444
Offset: 0
-
[1] cat [3^n + 1: n in [1..30]]; // G. C. Greubel, Jun 22 2021
-
Join[{1},LinearRecurrence[{4,-3},{4,10},30]] (* Harvey P. Dale, Mar 29 2015 *)
-
my(x='x+O('x^50)); Vec((1-3*x^2)/((1-x)*(1-3*x))) \\ Altug Alkan, Dec 04 2015
-
[1]+[3^n + 1 for n in (1..30)] # G. C. Greubel, Jun 22 2021
A260217
Number of base-3 n-digit pandigital numbers.
Original entry on oeis.org
0, 0, 4, 24, 100, 360, 1204, 3864, 12100, 37320, 114004, 346104, 1046500, 3155880, 9500404, 28566744, 85831300, 257756040, 773792404, 2322425784, 6969374500, 20912317800, 62745342004, 188252803224, 564791964100, 1694443001160, 5083463221204, 15250658099064
Offset: 1
a(3)=4 because, in base 3, there are four 3-digit pandigital numbers (11=102_3, 15=120_3, 19=201_3, and 21=210_3).
a(4)=24 because, in base 3, there are 24 4-digit pandigital numbers (1002_3, 1012_3, 1020_3, 1021_3, 1022_3, 1102_3, 1120_3, 1200_3, 1201_3, 1202_3, 1210_3, 1220_3, 2001_3, 2010_3, 2011_3, 2012_3, 2021_3, 2100_3, 2101_3, 2102_3, 2110_3, 2120_3, 2201_3, and 2210_3).
- Svenja Huntemann, Values, Temperatures, and Enumeration of Placement Games, Slides, Alberta-Montana Combinatorics and Algorithms Day, Banff, Canada, 23-25 June 2023. See p. 105/109.
- Index entries for linear recurrences with constant coefficients, signature (6,-11,6).
A372396
Triangle T(n,k) in which row n lists in increasing order the number of acyclic orientations of complete multipartite graphs K_lambda, where lambda is a partition of n; triangle T(n,k), n>=0, k = 1..A000041(n), read by rows.
Original entry on oeis.org
1, 1, 1, 2, 1, 4, 6, 1, 8, 14, 18, 24, 1, 16, 46, 54, 78, 96, 120, 1, 32, 146, 162, 230, 330, 384, 426, 504, 600, 720, 1, 64, 454, 486, 1066, 1374, 1536, 1902, 2286, 2616, 3000, 3216, 3720, 4320, 5040, 1, 128, 1394, 1458, 4718, 5658, 6144, 6902, 10554, 12090
Offset: 0
Triangle T(n,k) begins:
1;
1;
1, 2;
1, 4, 6;
1, 8, 14, 18, 24;
1, 16, 46, 54, 78, 96, 120;
1, 32, 146, 162, 230, 330, 384, 426, 504, 600, 720;
...
-
g:= proc(n) option remember; `if`(n=0, 1, add(
expand(x*g(n-j))*binomial(n-1, j-1), j=1..n))
end:
h:= proc() option remember; local q, l, b; q, l, b:= -1, args,
proc(n, j) option remember; `if`(j=1, mul(q-i, i=0..n-1)*
(q-n)^l[1], add(b(n+m, j-1)*coeff(g(l[j]), x, m), m=0..l[j]))
end; abs(b(0, nops(l)))
end:
b:= proc(n, i, l) `if`(n=0 or i=1, [h([l[], 1$n, 0])],
[b(n-i, min(n-i, i), [l[], i])[], b(n, i-1, l)[]])
end:
T:= n-> sort(b(n$2, []))[]:
seq(T(n), n=0..10);
A383621
a(n) is the minimum possible value of x_1 + x_2 + ... + x_n where x_1, x_2, ..., x_n are positive integers such that x_i does not divide x_j for any i != j.
Original entry on oeis.org
1, 5, 10, 17, 28, 41, 55, 72, 91, 111, 134, 159, 187, 216, 247, 282, 319, 360, 403, 447, 493, 540, 589, 641, 694, 749, 808, 869, 934, 1001, 1069, 1139, 1210, 1283, 1359, 1436, 1515, 1598, 1683, 1772, 1863, 1955, 2050, 2147, 2245, 2345, 2446, 2549, 2656, 2765, 2878
Offset: 1
For n <= 6, the construction is given by the n smallest primes.
For n = 7, the numbers 4, 5, 6, 7, 9, 11, 13 are mutually indivisible and their sum is a(7) = 55.
-
A027649(n) = 2*3^n-2^n;
A383622(nn) = {my(v=[]); for(n=0, logint(nn,3), d = A027649(n); m = floor(nn/d); for(i=0, floor(m/6), if(6*i+1 <= m, v=concat(v, d*(6*i+1))); if(6*i+5 <= m, v=concat(v, d*(6*i+5))))); v=vecsort(v); v};
lista(nn) = {u = A383622(3*nn); my(v=vector(nn)); s=0; for(n=1, nn, s = s + u[n]; v[n] = s); v};
Original entry on oeis.org
1, 4, 5, 7, 11, 13, 14, 17, 19, 20, 23, 25, 28, 29, 31, 35, 37, 41, 43, 44, 46, 47, 49, 52, 53, 55, 59, 61, 65, 67, 68, 70, 71, 73, 76, 77, 79, 83, 85, 89, 91, 92, 95, 97, 98, 100, 101, 103, 107, 109, 113, 115, 116, 119, 121, 124, 125, 127, 131, 133, 137, 139, 140, 143
Offset: 1
-
A027649(n) = 2*3^n-2^n;
upto(nn) = {v=[]; for(n=0, logint(nn,3), d = A027649(n); m = floor(nn/d); for(i=0, floor(m/6), if(6*i+1 <= m, v=concat(v, d*(6*i+1))); if(6*i+5 <= m, v=concat(v, d*(6*i+5))))); v=vecsort(v); v};
A095698
Number of permutations of {1,2,3,...,n} where, for 1 < i <= n, the i-th number has maximized sum of the i-1 absolute differences from all previous numbers of the permutation.
Original entry on oeis.org
1, 2, 4, 6, 14, 18, 46, 54, 146, 162, 454, 486, 1394, 1458, 4246, 4374, 12866, 13122, 38854, 39366, 117074, 118098, 352246, 354294, 1058786, 1062882, 3180454, 3188646, 9549554, 9565938, 28665046, 28697814, 86027906, 86093442, 258149254
Offset: 1
a(4)=6 as these six permutations of {1,2,3,4} are counted (as in A095236(4)): (1,4,2,3), (1,4,3,2), (2,4,1,3), (3,1,4,2), (4,1,2,3) and (4,1,3,2).
In particular, (2,4,3,1) and (3,1,2,4), counted in A095236(4), are not counted here.
-
CoefficientList[Series[(-4*x^3-x^2+2*x+1)/(6*x^4-5*x^2+1), {x,0,34}], x] (* Georg Fischer, Nov 19 2022 *)
A210381
Triangle by rows, derived from the beheaded Pascal's triangle, A074909.
Original entry on oeis.org
1, 0, 2, 0, 1, 3, 0, 1, 3, 4, 0, 1, 4, 6, 5, 0, 1, 5, 10, 10, 6, 0, 1, 6, 15, 20, 15, 7, 0, 1, 7, 21, 35, 35, 21, 8, 0, 1, 8, 28, 56, 70, 56, 28, 9, 0, 1, 9, 36, 84, 126, 126, 84, 36, 10, 0, 1, 10, 45, 120, 210, 252, 210, 120, 45, 11
Offset: 0
{1},
{0, 2},
{0, 1, 3},
{0, 1, 3, 4},
{0, 1, 4, 6, 5},
{0, 1, 5, 10, 10, 6},
{0, 1, 6, 15, 20, 15, 7},
{0, 1, 7, 21, 35, 35, 21, 8},
{0, 1, 8, 28, 56, 70, 56, 28, 9},
{0, 1, 9, 36, 84, 126, 126, 84, 36, 10},
{0, 1, 10, 45, 120, 210, 252, 210, 120, 45, 11}
...
- Konrad Knopp, Elements of the Theory of Functions, Dover, 1952,pp 117-118.
-
t2[n_, m_] = If[m - 1 <= n, Binomial[n, m - 1], 0];
O2 = Table[Table[If[n == m, t2[n, m] + 1, t2[n, m]], {m, 0, n}], {n, 0, 10}];
Flatten[O2]
A212362
Triangle by rows, binomial transform of the beheaded Pascal's triangle A074909.
Original entry on oeis.org
1, 2, 2, 4, 7, 3, 8, 19, 15, 4, 16, 47, 52, 26, 5, 32, 111, 155, 110, 40, 6, 64, 255, 426, 385, 200, 57, 7, 128, 575, 1113, 1211, 805, 329, 77, 8, 256, 1279, 2808, 3556, 2856, 1498, 504, 100, 9, 512, 2815, 6903, 9948, 9324, 5922, 2562, 732, 126, 10
Offset: 0
First few rows of the triangle are:
1;
2, 2;
4, 7, 3;
8, 19, 15, 4
16, 47, 52, 26, 5;
32, 111, 155, 110, 40, 6;
64, 255, 426, 385, 200, 57, 7;
128, 575, 1113, 1211, 805, 329, 77, 8;
256, 1279, 2808, 3556, 2856, 1498, 504, 100, 9;
...
-
A074909:= func< n,k | k lt 0 or k gt n select 0 else Binomial(n+1, k) >;
A212362:= func< n,k | (&+[ Binomial(n,j)*A074909(j, k) : j in [0..n]]) >;
[A212362(n,k): k in [0..n], n in [0..12]]; // G. C. Greubel, Aug 05 2021
-
A212362 := proc(n,k)
add( binomial(n,i)*A074909(i,k),i=0..n) ;
end proc: # R. J. Mathar, Aug 03 2015
-
T[n_, k_]= 2^(n-k)*Binomial[n+1, k] + (2^(n-k) -1)*Binomial[n, k-1];
Table[T[n, k] , {n,0,12}, {k,0,n}] //Flatten (* G. C. Greubel, Aug 05 2021 *)
-
def T(n, k): return 2^(n-k)*binomial(n+1, k) + (2^(n-k) - 1)*binomial(n, k-1)
flatten([[T(n,k) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Aug 05 2021
A163824
Number of permutations of length n in the 2x2 double-chevron permutation grid class.
Original entry on oeis.org
1, 1, 2, 6, 24, 106, 470, 2038, 8624, 35754, 145902, 588358, 2351910, 9341814, 36936146, 145567966, 572415344, 2247578314, 8816986046, 34570684966, 135522530174, 531285354214, 2083180354466, 8170672802686, 32059325714054, 125845764142006, 494223989283650
Offset: 0
a(5) = 106 because the following 14 permutations can't be gridded (and hence are in the basis of the permutation class): 12543, 13254, 14253, 15243, 15423, 25413, 31254, 35412, 41253, 51243, 51423, 52413, 53412, 54123.
-
CoefficientList[Series[1/Sqrt[1-4x]-(x(1-x))/((1-2x)(1-3x)),{x,0,30}],x] (* Harvey P. Dale, Jun 09 2016 *)
Comments