cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 37 results. Next

A281156 Expansion of Product_{k>=1} (1 + x^k)^(k*(k+1)*(2*k+1)/6).

Original entry on oeis.org

1, 1, 5, 19, 54, 165, 467, 1317, 3599, 9687, 25519, 66203, 169254, 426750, 1062950, 2616818, 6373911, 15369774, 36716706, 86939235, 204152395, 475631501, 1099874363, 2525418842, 5759549109, 13050991205, 29391523405, 65801951770, 146486952644, 324340095729, 714389015139
Offset: 0

Views

Author

Ilya Gutkovskiy, Jan 16 2017

Keywords

Comments

Weigh transform of square pyramidal numbers (A000330).

Crossrefs

Programs

  • Mathematica
    nmax = 30; CoefficientList[Series[Product[(1 + x^k)^(k (k + 1) (2 k + 1)/6), {k, 1, nmax}], {x, 0, nmax}], x]

Formula

G.f.: Product_{k>=1} (1 + x^k)^(k*(k+1)*(2*k+1)/6).
a(n) ~ exp(5*(15*Zeta(5))^(1/5) * n^(4/5) / 2^(11/5) + 7*Pi^4 * n^(3/5) / (360*2^(2/5) * (15*Zeta(5))^(3/5)) + (Zeta(3) / (2^(13/5) * (15*Zeta(5))^(2/5)) - 49*Pi^8 / (2160000 * 2^(3/5) * 15^(2/5) * Zeta(5)^(7/5)))*n^(2/5) + (343*Pi^12 / (9720000000 * 2^(4/5) * 15^(1/5) * Zeta(5)^(11/5)) - 7*Pi^4 * Zeta(3) / (18000 * 2^(4/5) * 15^(1/5) * Zeta(5)^(6/5))) * n^(1/5) + 49*Pi^8 * Zeta(3) / (129600000 * Zeta(5)^2) - 2401 * Pi^16 / (83980800000000 * Zeta(5)^3) - Zeta(3)^2 / (1200*Zeta(5))) * (3*Zeta(5))^(1/10) / (2^(11/18) * 5^(2/5) * sqrt(Pi) * n^(3/5)). - Vaclav Kotesovec, Nov 09 2017

A281790 Expansion of Product_{k>=1} (1+x^(k^2))^k.

Original entry on oeis.org

1, 1, 0, 0, 2, 2, 0, 0, 1, 4, 3, 0, 0, 6, 6, 0, 4, 7, 6, 3, 8, 8, 6, 6, 4, 21, 20, 4, 1, 34, 34, 2, 8, 23, 44, 28, 19, 18, 54, 54, 18, 56, 65, 46, 25, 100, 94, 38, 42, 85, 169, 107, 56, 69, 226, 194, 62, 111, 194, 241, 125, 215, 246, 258, 207, 283, 437, 292
Offset: 0

Views

Author

Vaclav Kotesovec, Apr 14 2017

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 100; CoefficientList[Series[Product[(1+x^(k^2))^k, {k,1,nmax}], {x,0,nmax}], x]
    nmax = 100; s = 1 + x; Do[s*=Sum[Binomial[k, j]*x^(j*k^2), {j, 0, Floor[nmax/k^2] + 1}]; s = Select[Expand[s], Exponent[#, x] <= nmax &];, {k, 2, nmax}]; CoefficientList[s, x]

Formula

a(n) ~ exp(sqrt(n/6)*Pi) / (2^(11/6) * 3^(1/4) * n^(3/4)). - Vaclav Kotesovec, Apr 15 2017

A291649 Expansion of Product_{k>=1} (1 + x^(k^2))^(k^2).

Original entry on oeis.org

1, 1, 0, 0, 4, 4, 0, 0, 6, 15, 9, 0, 4, 40, 36, 0, 17, 71, 90, 36, 64, 100, 180, 144, 96, 274, 394, 300, 148, 740, 820, 480, 472, 1150, 1851, 1341, 1146, 1318, 3880, 3540, 1704, 3017, 6455, 7134, 3780, 7822, 9574, 12180, 10304, 12057, 19750, 22485, 20558, 15910, 43076, 43236, 31104, 33742, 66895
Offset: 0

Views

Author

Ilya Gutkovskiy, Aug 28 2017

Keywords

Comments

Number of partitions of n into distinct squares, where k^2 different parts of size k^2 are available (1a, 4a, 4b, 4c, 4d, ...).

Examples

			a(8) = 6 because we have [4a, 4b], [4a, 4c], [4a, 4d], [4b, 4c], [4b, 4d] and [4c, 4d].
		

Crossrefs

Programs

  • Mathematica
    nmax = 100; CoefficientList[Series[Product[(1 + x^k^2)^k^2, {k, 1, nmax}], {x, 0, nmax}], x]
    nmax = 100; s = 1 + x; Do[s *= Sum[Binomial[k^2, j]*x^(j*k^2), {j, 0, Floor[nmax/k^2] + 1}]; s = Select[Expand[s], Exponent[#, x] <= nmax &];, {k, 2, nmax}]; CoefficientList[s, x] (* Vaclav Kotesovec, Aug 28 2017 *)

Formula

G.f.: Product_{k>=1} (1 + x^A000290(k))^A000290(k).
a(n) ~ exp(5 * 2^(-9/5) * 3^(-3/5) * (9-4*sqrt(2))^(1/5) * Pi^(1/5) * Zeta(5/2)^(2/5) * n^(3/5)) * 3^(1/5) * (2*sqrt(2)-1)^(1/5) * Zeta(5/2)^(1/5) / (2^(9/10) * sqrt(5) * Pi^(2/5) * n^(7/10)). - Vaclav Kotesovec, Aug 29 2017

A294836 Expansion of Product_{k>=1} (1 + x^k)^(k*(2*k-1)).

Original entry on oeis.org

1, 1, 6, 21, 58, 178, 494, 1365, 3640, 9533, 24401, 61384, 151958, 370335, 890565, 2113913, 4959199, 11505799, 26420628, 60082005, 135386341, 302448477, 670148898, 1473387787, 3215519032, 6968266907, 14999453058, 32079714584, 68187859040, 144083404856, 302727633735, 632579826174
Offset: 0

Views

Author

Ilya Gutkovskiy, Nov 09 2017

Keywords

Comments

Weigh transform of the hexagonal numbers (A000384).
This sequence is obtained from the generalized Euler transform in A266964 by taking f(n) = -n*(2*n-1), g(n) = -1. - Seiichi Manyama, Nov 14 2017

Crossrefs

Programs

  • Mathematica
    nmax = 31; CoefficientList[Series[Product[(1 + x^k)^(k (2 k - 1)), {k, 1, nmax}], {x, 0, nmax}], x]
    a[n_] := a[n] = If[n == 0, 1, Sum[Sum[(-1)^(k/d + 1) d^2 (2 d - 1), {d, Divisors[k]}] a[n - k], {k, 1, n}]/n]; Table[a[n], {n, 0, 31}]

Formula

G.f.: Product_{k>=1} (1 + x^k)^A000384(k).
a(n) ~ 7^(1/8) * exp(Pi*2^(3/2) * (7/15)^(1/4) * n^(3/4)/3 - 3*Zeta(3)*sqrt(15*n/7) / (2*Pi^2) - 135*Zeta(3)^2 * (15*n/7)^(1/4) / (28*sqrt(2)*Pi^5) - 2025*Zeta(3)^3 / (196*Pi^8)) / (2^(5/3) * 15^(1/8) * n^(5/8)). - Vaclav Kotesovec, Nov 10 2017
a(0) = 1 and a(n) = (1/n) * Sum_{k=1..n} b(k)*a(n-k) where b(n) = Sum_{d|n} d^2*(2*d-1)*(-1)^(1+n/d). - Seiichi Manyama, Nov 14 2017

A261052 Expansion of Product_{k>=1} (1+x^k)^(k!).

Original entry on oeis.org

1, 1, 2, 8, 31, 157, 915, 6213, 48240, 423398, 4147775, 44882107, 531564195, 6837784087, 94909482330, 1413561537884, 22482554909451, 380269771734265, 6815003300096013, 128992737080703803, 2571218642722865352, 53835084737513866662, 1181222084520177393143
Offset: 0

Views

Author

Vaclav Kotesovec, Aug 08 2015

Keywords

Comments

Weigh transform of the factorial numbers. - Alois P. Heinz, Jun 11 2018

Crossrefs

Programs

  • Maple
    b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0,
          add(binomial(i!, j)*b(n-i*j,i-1), j=0..n/i)))
        end:
    a:= n-> b(n$2):
    seq(a(n), n=0..25);  # Alois P. Heinz, Aug 08 2015
  • Mathematica
    nmax=25; CoefficientList[Series[Product[(1+x^k)^(k!),{k,1,nmax}],{x,0,nmax}],x]
  • PARI
    seq(n)={Vec(exp(x*Ser(dirmul(vector(n, n, n!), -vector(n, n, (-1)^n/n)))))} \\ Andrew Howroyd, Jun 22 2018

Formula

a(n) ~ n! * (1 + 1/n + 2/n^2 + 10/n^3 + 57/n^4 + 401/n^5 + 3382/n^6 + 33183/n^7 + 371600/n^8 + 4685547/n^9 + 65792453/n^10).

A294749 Expansion of Product_{k>=1} (1 + x^(2*k - 1))^(k^2).

Original entry on oeis.org

1, 1, 0, 4, 4, 9, 15, 22, 52, 65, 129, 190, 335, 534, 814, 1399, 2074, 3462, 5135, 8303, 12658, 19562, 30182, 45542, 70620, 105034, 161223, 239532, 362929, 539252, 805320, 1197589, 1769483, 2624604, 3847755, 5681787, 8291848, 12165978, 17696362, 25796820
Offset: 0

Views

Author

Vaclav Kotesovec, Nov 08 2017

Keywords

Comments

In general, if g.f. = Product_{k>=1} (1 + x^(2*k-1))^(c2*k^2 + c1*k + c0) and c2>0, then a(n) ~ exp(Pi*sqrt(2)/3 * (7*c2/15)^(1/4) * n^(3/4) + 3*(c1+c2) * Zeta(3) / (2*Pi^2) * sqrt(15*n/(7*c2)) + (Pi*(4*c0 + 2*c1 + c2) * (15/(7*c2))^(1/4) / (24*sqrt(2)) - 9*(c1+c2)^2 * Zeta(3)^2 * (15/(7*c2))^(5/4) / (2^(3/2) * Pi^5)) * n^(1/4) + 2025*(c1+c2)^3 * Zeta(3)^3 / (49 * c2^2 * Pi^8) - 15*(c1+c2) * (4*c0 + 2*c1 + c2) * Zeta(3) / (112 * c2 * Pi^2)) * (7/15)^(1/8) * 2^((c1+c2)/24 - 9/4) * c2^(1/8) / n^(5/8).

Crossrefs

Programs

  • Mathematica
    nmax = 50; CoefficientList[Series[Product[(1+x^(2*k-1))^(k^2), {k, 1, nmax}], {x, 0, nmax}], x]

Formula

a(n) ~ exp(Pi/3 * (7/15)^(1/4) * sqrt(2) * n^(3/4) + 3*Zeta(3) * sqrt(15*n/7) / (2*Pi^2) + (Pi * (15/7)^(1/4) / (24*sqrt(2)) - 9*Zeta(3)^2 * (15/7)^(5/4) / (2^(3/2) * Pi^5)) * n^(1/4) + 2025*Zeta(3)^3 / (49*Pi^8) - 15*Zeta(3) / (112*Pi^2)) * (7/15)^(1/8) / (2^(53/24) * n^(5/8)).

A307462 Expansion of Product_{k>=1} (1+x^k)^((-1)^k*k^2).

Original entry on oeis.org

1, -1, 5, -14, 36, -97, 246, -593, 1423, -3351, 7699, -17432, 38901, -85545, 185862, -399220, 848080, -1783682, 3716584, -7675916, 15722127, -31951330, 64452707, -129102947, 256876062, -507854808, 997954125, -1949631802, 3787674152, -7319306458, 14071371173
Offset: 0

Views

Author

Seiichi Manyama, Apr 09 2019

Keywords

Comments

This sequence is obtained from the generalized Euler transform in A266964 by taking f(n) = (-1)^(n+1) * n^2, g(n) = -1.

Crossrefs

Product_{k>=1} (1+x^k)^((-1)^k*k^b): A083365 (b=0), A284474 (b=1), this sequence (b=2).

Programs

  • Mathematica
    nmax = 40; CoefficientList[Series[Product[(1 + x^k)^((-1)^k*k^2), {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Apr 09 2019 *)
    nmax = 40; CoefficientList[Series[Product[(1 + x^(2*k))^(4*k^2) / (1 + x^(2*k - 1))^((2*k - 1)^2), {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Apr 09 2019 *)
  • PARI
    N=66; x='x+O('x^N); Vec(prod(k=1, N, (1+x^k)^((-1)^k*k^2)))

Formula

a(n) ~ (-1)^n * exp(2*Pi*n^(3/4)/3 + 3*Zeta(3)/(4*Pi^2)) / (4*n^(5/8)). - Vaclav Kotesovec, Apr 09 2019

A261051 Expansion of Product_{k>=1} (1+x^k)^(Lucas(k)).

Original entry on oeis.org

1, 1, 3, 7, 14, 33, 69, 148, 307, 642, 1314, 2684, 5432, 10924, 21841, 43431, 85913, 169170, 331675, 647601, 1259737, 2441706, 4716874, 9083215, 17439308, 33387589, 63749174, 121409236, 230658963, 437198116, 826838637, 1560410267, 2938808875, 5524005110
Offset: 0

Views

Author

Vaclav Kotesovec, Aug 08 2015

Keywords

Crossrefs

Programs

  • Maple
    L:= n-> (<<0|1>, <1|1>>^n. <<2, 1>>)[1, 1]:
    b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0,
           add(binomial(L(i), j)*b(n-i*j, i-1), j=0..n/i)))
        end:
    a:= n-> b(n$2):
    seq(a(n), n=0..50);  # Alois P. Heinz, Aug 08 2015
  • Mathematica
    nmax=40; CoefficientList[Series[Product[(1+x^k)^LucasL[k],{k,1,nmax}],{x,0,nmax}],x]

Formula

a(n) ~ phi^n / (2*sqrt(Pi)*n^(3/4)) * exp(-1 + 1/(2*sqrt(5)) + 2*sqrt(n) + s), where s = Sum_{k>=2} (-1)^(k+1) * (2 + phi^k)/((phi^(2*k) - phi^k - 1)*k) = -0.590290697526802161885355317939144642488927381134222996704542... and phi = A001622 = (1+sqrt(5))/2 is the golden ratio.
G.f.: exp(Sum_{k>=1} (-1)^(k+1)*x^k*(1 + 2*x^k)/(k*(1 - x^k - x^(2*k)))). - Ilya Gutkovskiy, May 30 2018

A304445 Coefficient of x^n in Product_{k>=1} (1+x^k)^(n^2).

Original entry on oeis.org

1, 1, 10, 174, 4132, 126905, 4802046, 216313349, 11313533064, 674172155790, 45102830448510, 3347925678474168, 273085613904116184, 24282144087974698445, 2337736453663291696624, 242272777074973285192935, 26892702305505020726198800, 3183326728470139531614913088
Offset: 0

Views

Author

Vaclav Kotesovec, May 12 2018

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 20; Table[SeriesCoefficient[Product[(1+x^k)^(n^2), {k, 1, n}], {x, 0, n}], {n, 0, nmax}]
    nmax = 20; Table[SeriesCoefficient[(QPochhammer[-1, x]/2)^(n^2), {x, 0, n}], {n, 0, nmax}]

Formula

a(n) ~ exp(n + 1/2) * n^(n - 1/2) / sqrt(2*Pi).

A285240 Expansion of Product_{k>=1} (1 + k*x^k)^(k^2).

Original entry on oeis.org

1, 1, 8, 35, 115, 429, 1425, 4803, 15398, 48940, 151046, 459000, 1373219, 4037721, 11723911, 33566828, 94993571, 265722551, 735543433, 2015558930, 5471271099, 14719853084, 39266487114, 103908002173, 272855152096, 711272144097, 1841162650896, 4734074846631
Offset: 0

Views

Author

Vaclav Kotesovec, Apr 15 2017

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 40; CoefficientList[Series[Product[(1 + k*x^k)^(k^2), {k,1,nmax}], {x,0,nmax}], x]
    nmax = 40; s = 1 + x; Do[s*=Sum[Binomial[k^2, j]*k^j*x^(j*k), {j, 0, Floor[nmax/k] + 1}]; s = Select[Expand[s], Exponent[#, x] <= nmax &];, {k, 2, nmax}]; CoefficientList[s, x]
Previous Showing 21-30 of 37 results. Next