cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 51-60 of 151 results. Next

A059895 Table a(i,j) = product prime[k]^(Ei[k] AND Ej[k]) where Ei and Ej are the vectors of exponents in the prime factorizations of i and j; AND is the bitwise operation on binary representation of the exponents.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 4, 1, 2, 1, 1, 1, 3, 1, 1, 3, 1, 1, 1, 2, 1, 1, 5, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 4, 1, 6, 1, 4, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 7, 2, 1, 1, 1, 1, 1, 1, 1, 3, 1, 5, 1, 1, 1, 1, 5, 1, 3, 1, 1, 1, 2, 1, 4, 1, 2, 1, 8, 1, 2, 1, 4, 1, 2, 1
Offset: 1

Views

Author

Marc LeBrun, Feb 06 2001

Keywords

Comments

Analogous to GCD, with AND replacing MIN.

Examples

			The top left 18 X 18 corner of the array:
1,  1,  1,  1,  1,  1,  1,  1,  1,  1,  1,  1,  1,  1,  1,  1,  1,  1
1,  2,  1,  1,  1,  2,  1,  2,  1,  2,  1,  1,  1,  2,  1,  1,  1,  2
1,  1,  3,  1,  1,  3,  1,  1,  1,  1,  1,  3,  1,  1,  3,  1,  1,  1
1,  1,  1,  4,  1,  1,  1,  4,  1,  1,  1,  4,  1,  1,  1,  1,  1,  1
1,  1,  1,  1,  5,  1,  1,  1,  1,  5,  1,  1,  1,  1,  5,  1,  1,  1
1,  2,  3,  1,  1,  6,  1,  2,  1,  2,  1,  3,  1,  2,  3,  1,  1,  2
1,  1,  1,  1,  1,  1,  7,  1,  1,  1,  1,  1,  1,  7,  1,  1,  1,  1
1,  2,  1,  4,  1,  2,  1,  8,  1,  2,  1,  4,  1,  2,  1,  1,  1,  2
1,  1,  1,  1,  1,  1,  1,  1,  9,  1,  1,  1,  1,  1,  1,  1,  1,  9
1,  2,  1,  1,  5,  2,  1,  2,  1, 10,  1,  1,  1,  2,  5,  1,  1,  2
1,  1,  1,  1,  1,  1,  1,  1,  1,  1, 11,  1,  1,  1,  1,  1,  1,  1
1,  1,  3,  4,  1,  3,  1,  4,  1,  1,  1, 12,  1,  1,  3,  1,  1,  1
1,  1,  1,  1,  1,  1,  1,  1,  1,  1,  1,  1, 13,  1,  1,  1,  1,  1
1,  2,  1,  1,  1,  2,  7,  2,  1,  2,  1,  1,  1, 14,  1,  1,  1,  2
1,  1,  3,  1,  5,  3,  1,  1,  1,  5,  1,  3,  1,  1, 15,  1,  1,  1
1,  1,  1,  1,  1,  1,  1,  1,  1,  1,  1,  1,  1,  1,  1, 16,  1,  1
1,  1,  1,  1,  1,  1,  1,  1,  1,  1,  1,  1,  1,  1,  1,  1, 17,  1
1,  2,  1,  1,  1,  2,  1,  2,  9,  2,  1,  1,  1,  2,  1,  1,  1, 18
A(864,1944) = A(2^5*3^3,2^3*3^5) = 2^(5 AND 3)* 3^(3 AND 5) = 2^1*3^1 = 6.
		

Crossrefs

Programs

Formula

From Antti Karttunen, Apr 11 2017: (Start)
A(x,y) = A059896(x,y) / A059897(x,y).
A(x,y) * A059896(x,y) = A(x,y)^2 * A059897(x,y) = x*y.
(End)

Extensions

Data section extended to 120 terms by Antti Karttunen, Apr 11 2017

A278908 Multiplicative with a(p^e) = 2^omega(e), where omega = A001221.

Original entry on oeis.org

1, 1, 1, 2, 1, 1, 1, 2, 2, 1, 1, 2, 1, 1, 1, 2, 1, 2, 1, 2, 1, 1, 1, 2, 2, 1, 2, 2, 1, 1, 1, 2, 1, 1, 1, 4, 1, 1, 1, 2, 1, 1, 1, 2, 2, 1, 1, 2, 2, 2, 1, 2, 1, 2, 1, 2, 1, 1, 1, 2, 1, 1, 2, 4, 1, 1, 1, 2, 1, 1, 1, 4, 1, 1, 2, 2, 1, 1, 1, 2, 2, 1, 1, 2, 1, 1
Offset: 1

Views

Author

R. J. Mathar, Nov 30 2016

Keywords

Comments

The number of exponential unitary (or e-unitary) divisors of n and the number of exponential squarefree exponential divisors (or e-squarefree e-divisors) of n. These are divisors of n = Product p(i)^a(i) of the form Product p(i)^b(i) where each b(i) is a unitary divisor of a(i) in the first case, or each b(i) is a squarefree divisor of a(i) in the second case. - Amiram Eldar, Dec 29 2018

Crossrefs

Cf. A001221.

Programs

  • Maple
    A278908 := proc(n)
        local a,p,e;
        a := 1;
        if n =1 then
            ;
        else
            for p in ifactors(n)[2] do
                e := op(2,p) ;
                a := a*2^A001221(e) ;
            end do:
        end if;
        a ;
    end proc:
  • Mathematica
    Table[Times @@ Apply[Times, FactorInteger[n] /. {p_, e_} /; p > 1 :> 2^PrimeNu[e]], {n, 105}] (* Michael De Vlieger, Jul 29 2017 *)
  • PARI
    a(n) = my(f=factor(n)); for (k=1, #f~, f[k,1] = 2^omega(f[k,2]); f[k,2] = 1); factorback(f); \\ Michel Marcus, Jul 28 2017
  • Scheme
    (define (A278908 n) (if (= 1 n) n (* (A000079 (A001221 (A067029 n))) (A278908 (A028234 n))))) ;; Antti Karttunen, Jul 27 2017
    

Formula

Asymptotic mean: lim_{n->oo} (1/n) * Sum_{k=1..n} a(k) = Product_{p prime} (1 + Sum_{k>=2} (2*omega(k) - 2^omega(k-1))/p^k) = 1.5431653193... (Tóth, 2007). - Amiram Eldar, Nov 08 2020

A349056 Number of weakly alternating permutations of the multiset of prime factors of n.

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 3, 1, 2, 2, 1, 1, 3, 1, 3, 2, 2, 1, 4, 1, 2, 1, 3, 1, 4, 1, 1, 2, 2, 2, 4, 1, 2, 2, 4, 1, 4, 1, 3, 3, 2, 1, 5, 1, 3, 2, 3, 1, 4, 2, 4, 2, 2, 1, 6, 1, 2, 3, 1, 2, 4, 1, 3, 2, 4, 1, 6, 1, 2, 3, 3, 2, 4, 1, 5, 1, 2, 1, 6, 2, 2, 2
Offset: 1

Views

Author

Gus Wiseman, Dec 02 2021

Keywords

Comments

We define a sequence to be weakly alternating if it is alternately weakly increasing and weakly decreasing, starting with either. Then a sequence is alternating in the sense of A025047 iff it is a weakly alternating anti-run.
A prime index of n is a number m such that prime(m) divides n. For n > 1, the multiset of prime factors of n is row n of A027746. The prime indices A112798 can also be used.

Examples

			The following are the weakly alternating permutations for selected n:
n = 2   6    12    24     48      60     90     120     180
   ----------------------------------------------------------
    2   23   223   2223   22223   2253   2335   22253   22335
        32   232   2232   22232   2325   2533   22325   22533
             322   2322   22322   2523   3253   22523   23253
                   3222   23222   3252   3325   23252   23352
                          32222   3522   3352   25232   25233
                                  5232   3523   32225   25332
                                         5233   32522   32325
                                         5332   35222   32523
                                                52223   33252
                                                52322   33522
                                                        35232
                                                        52323
                                                        53322
		

Crossrefs

Counting all permutations of prime factors gives A008480.
The variation counting anti-run permutations is A335452.
The strong case is A345164, with twins A344606.
Compositions of this type are counted by A349052, also A129852 and A129853.
Compositions not of this type are counted by A349053, ranked by A349057.
The version for patterns is A349058, strong A345194.
The version for ordered factorizations is A349059, strong A348610.
Partitions of this type are counted by A349060, complement A349061.
The complement is counted by A349797.
The non-alternating case is A349798.
A001250 counts alternating permutations, complement A348615.
A003242 counts Carlitz (anti-run) compositions.
A025047 counts alternating or wiggly compositions, ranked by A345167.
A056239 adds up prime indices, row sums of A112798, row lengths A001222.
A071321 gives the alternating sum of prime factors, reverse A071322.
A344616 gives the alternating sum of prime indices, reverse A316524.
A345165 counts partitions w/o an alternating permutation, ranked by A345171.
A345170 counts partitions w/ an alternating permutation, ranked by A345172.
A348379 counts factorizations with an alternating permutation.
A349800 counts weakly but not strongly alternating compositions.

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    whkQ[y_]:=And@@Table[If[EvenQ[m],y[[m]]<=y[[m+1]],y[[m]]>=y[[m+1]]],{m,1,Length[y]-1}];
    Table[Length[Select[Permutations[primeMS[n]],whkQ[#]||whkQ[-#]&]],{n,100}]

A056671 1 + the number of unitary and squarefree divisors of n = number of divisors of reduced squarefree part of n.

Original entry on oeis.org

1, 2, 2, 1, 2, 4, 2, 1, 1, 4, 2, 2, 2, 4, 4, 1, 2, 2, 2, 2, 4, 4, 2, 2, 1, 4, 1, 2, 2, 8, 2, 1, 4, 4, 4, 1, 2, 4, 4, 2, 2, 8, 2, 2, 2, 4, 2, 2, 1, 2, 4, 2, 2, 2, 4, 2, 4, 4, 2, 4, 2, 4, 2, 1, 4, 8, 2, 2, 4, 8, 2, 1, 2, 4, 2, 2, 4, 8, 2, 2, 1, 4, 2, 4, 4, 4, 4, 2, 2, 4, 4, 2, 4, 4, 4, 2, 2, 2, 2, 1, 2, 8, 2, 2, 8
Offset: 1

Views

Author

Labos Elemer, Aug 10 2000

Keywords

Comments

Note that 1 is regarded as free of squares of primes and is also a square number and a unitary divisor.

Examples

			n = 252 = 2*2*3*3*7 has 18 divisors, 8 unitary and 8 squarefree divisors of which 2 are unitary and squarefree, divisors {1,7};
n = 2520 = 2*2*2*3*3*5*7 has 48 divisors, 16 unitary and 16 squarefree divisors of which {1,5,7,35} are both, thus a(2520) = 4.
a(2520) = a(2^3*3^2*5*7) = a(2^3)*a(3^2)*a(5)*a(7) = 1*1*2*2 = 4.
		

Crossrefs

Programs

  • Mathematica
    Array[DivisorSigma[0, #] &@ Denominator[#/Apply[Times, FactorInteger[#][[All, 1]]]^2] &, 105] (* or *)
    Table[DivisorSum[n, 1 &, And[SquareFreeQ@ #, CoprimeQ[#, n/#]] &], {n, 105}] (* Michael De Vlieger, Jul 19 2017 *)
    f[p_,e_] := If[e==1, 2, 1]; a[1] = 1; a[n_] := Times @@ (f @@@ FactorInteger[n]); Array[a, 100] (* Amiram Eldar, May 14 2019 *)
  • PARI
    A057521(n) = { my(f=factor(n)); prod(i=1, #f~, if(f[i, 2]>1, f[i, 1]^f[i, 2], 1)); } \\ Charles R Greathouse IV, Aug 13 2013
    A055231(n) = n/A057521(n);
    A056671(n) = numdiv(A055231(n));
    \\ Or:
    A055229(n) = { my(c=core(n)); gcd(c, n/c); }; \\ This function from Charles R Greathouse IV, Nov 20 2012
    A056671(n) = numdiv(core(n)/A055229(n)); \\ Antti Karttunen, Jul 19 2017
    
  • PARI
    for(n=1, 100, print1(direuler(p=2, n, (1 + X - X^2)/(1-X))[n], ", ")) \\ Vaclav Kotesovec, Feb 11 2023
    
  • PARI
    a(n) = vecprod(apply(x -> if(x == 1, 2, 1), factor(n)[, 2])); \\ Amiram Eldar, Apr 15 2025
    
  • Python
    from sympy import factorint, prod
    def a(n): return 1 if n==1 else prod([2 if e==1 else 1 for p, e in factorint(n).items()])
    print([a(n) for n in range(1, 51)]) # Indranil Ghosh, Jul 19 2017
  • Scheme
    (define (A056671 n) (if (= 1 n) n (* (if (= 1 (A067029 n)) 2 1) (A056671 (A028234 n))))) ;; (After the given multiplicative formula) - Antti Karttunen, Jul 19 2017
    

Formula

a(n) = A000005(A055231(n)) = A000005(A007913(n)/A055229(n)).
Multiplicative with a(p) = 2 and a(p^e) = 1 for e > 1. a(n) = 2^A056169(n). - Vladeta Jovovic, Nov 01 2001
a(n) = A034444(n) - A056674(n). - Antti Karttunen, Jul 19 2017
From Vaclav Kotesovec, Feb 11 2023: (Start)
Dirichlet g.f.: zeta(s) * Product_{primes p} (1 + 1/p^s - 1/p^(2*s)).
Dirichlet g.f.: zeta(s)^2 * Product_{primes p} (1 - 2/p^(2*s) + 1/p^(3*s)), (with a product that converges for s=1).
Let f(s) = Product_{primes p} (1 - 2/p^(2*s) + 1/p^(3*s)), then Sum_{k=1..n} a(k) ~ n * (f(1) * (log(n) + 2*gamma - 1) + f'(1)), where f(1) = Product_{primes p} (1 - 2/p^2 + 1/p^3) = A065464 = 0.42824950567709444021876..., f'(1) = f(1) * Sum_{primes p} (4*p-3) * log(p) / (p^3 - 2*p + 1) = 0.808661108949590913395... and gamma is the Euler-Mascheroni constant A001620. (End)
a(n) = Sum_{d|n, gcd(d,n/d)=1} mu(d)^2. - Wesley Ivan Hurt, May 25 2023
a(n) = Sum_{d|n} A343443(d)*mu(n/d). - Ridouane Oudra, Dec 18 2023

A268387 Bitwise-XOR of the exponents of primes in the prime factorization of n.

Original entry on oeis.org

0, 1, 1, 2, 1, 0, 1, 3, 2, 0, 1, 3, 1, 0, 0, 4, 1, 3, 1, 3, 0, 0, 1, 2, 2, 0, 3, 3, 1, 1, 1, 5, 0, 0, 0, 0, 1, 0, 0, 2, 1, 1, 1, 3, 3, 0, 1, 5, 2, 3, 0, 3, 1, 2, 0, 2, 0, 0, 1, 2, 1, 0, 3, 6, 0, 1, 1, 3, 0, 1, 1, 1, 1, 0, 3, 3, 0, 1, 1, 5, 4, 0, 1, 2, 0, 0, 0, 2, 1, 2, 0, 3, 0, 0, 0, 4, 1, 3, 3, 0, 1, 1, 1, 2, 1, 0, 1, 1, 1, 1, 0, 5, 1, 1, 0, 3, 3, 0, 0, 3
Offset: 1

Views

Author

Antti Karttunen, Feb 05 2016

Keywords

Comments

The sums of the first 10^k terms, for k = 1, 2, ..., are 11, 139, 1427, 14207, 141970, 1418563, 14183505, 141834204, 1418330298, 14183245181, ... . Apparently, the asymptotic mean of this sequence is limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = 1.4183... . - Amiram Eldar, Sep 10 2022

Crossrefs

A003987, A028234, A059897 and A067029 are used to express relationships between sequence terms.
Cf. A268390 (indices of zeros).
Sequences with similar definitions: A267115, A267116.
Differs from A136566 for the first time at n=24, where a(24) = 2, while A136566(24) = 4.

Programs

  • Mathematica
    Table[BitXor @@ Map[Last, FactorInteger@ n], {n, 120}] (* Michael De Vlieger, Feb 12 2016 *)
  • PARI
    a(n) = {my(f = factor(n)); my(b = 0); for (k=1, #f~, b = bitxor(b, f[k,2]);); b;} \\ Michel Marcus, Feb 06 2016
    
  • Python
    from functools import reduce
    from operator import xor
    from sympy import factorint
    def A268387(n): return reduce(xor,factorint(n).values(),0) # Chai Wah Wu, Aug 31 2022

Formula

a(1) = 0; for n > 1: a(n) = A067029(n) XOR a(A028234(n)). [Here XOR stands for bitwise exclusive-or, A003987.]
Other identities and observations. For all n >= 1:
a(n) <= A267116(n) <= A001222(n).
From Peter Munn, Dec 02 2019 with XOR used as above: (Start)
Defined by: a(p^k) = k, for prime p; a(A059897(n,k)) = a(n) XOR a(k).
a(A052330(n XOR k)) = a(A052330(n)) XOR a(A052330(k)).
a(A019565(n XOR k)) = a(A019565(n)) XOR a(A019565(k)).
(End)

A275812 Sum of exponents larger than one in the prime factorization of n: A001222(n) - A056169(n).

Original entry on oeis.org

0, 0, 0, 2, 0, 0, 0, 3, 2, 0, 0, 2, 0, 0, 0, 4, 0, 2, 0, 2, 0, 0, 0, 3, 2, 0, 3, 2, 0, 0, 0, 5, 0, 0, 0, 4, 0, 0, 0, 3, 0, 0, 0, 2, 2, 0, 0, 4, 2, 2, 0, 2, 0, 3, 0, 3, 0, 0, 0, 2, 0, 0, 2, 6, 0, 0, 0, 2, 0, 0, 0, 5, 0, 0, 2, 2, 0, 0, 0, 4, 4, 0, 0, 2, 0, 0, 0, 3, 0, 2, 0, 2, 0, 0, 0, 5, 0, 2, 2, 4, 0, 0, 0, 3, 0, 0, 0, 5, 0, 0, 0, 4, 0, 0, 0, 2, 2, 0, 0, 3
Offset: 1

Views

Author

Antti Karttunen, Aug 11 2016

Keywords

Crossrefs

Differs from A212172 for the first time at n=36, where a(36)=4, while A212172(36)=2.

Programs

  • Mathematica
    Table[Total@ Map[Last, Select[FactorInteger@ n, Last@ # > 1 &] /. {} -> {{0, 0}}], {n, 120}] (* Michael De Vlieger, Aug 11 2016 *)
  • PARI
    a(n) = my(f = factor(n)); sum(k=1, #f~, if (f[k,2] > 1, f[k,2])); \\ Michel Marcus, Jul 19 2017
  • Perl
    sub a275812 { vecsum( grep {$> 1} map {$->[1]} factor_exp(shift) ); } # Dana Jacobsen, Aug 15 2016
    
  • Python
    from sympy import factorint, primefactors
    def a001222(n):
        return 0 if n==1 else a001222(n//primefactors(n)[0]) + 1
    def a056169(n):
        f=factorint(n)
        return 0 if n==1 else sum(1 for i in f if f[i]==1)
    def a(n):
        return a001222(n) - a056169(n)
    print([a(n) for n in range(1, 101)]) # Indranil Ghosh, Jun 19 2017
    

Formula

a(1) = 0, and for n > 1, if A067029(n)=1 [when n is one of the terms of A247180], a(n) = a(A028234(n)), otherwise a(n) = A067029(n)+a(A028234(n)).
a(n) = A001222(n) - A056169(n).
a(n) = A001222(A057521(n)). - Antti Karttunen, Jul 19 2017
From Amiram Eldar, Sep 28 2023: (Start)
Additive with a(p) = 0, and a(p^e) = e for e >= 2.
a(n) >= 0, with equality if and only if n is squarefree (A005117).
a(n) <= A001222(n), with equality if and only if n is powerful (A001694).
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = Sum_{p prime} (1/p^2 + 1/(p*(p-1))) = A085548 + A136141 = 1.22540408909086062637... . (End)
a(n) = A046660(n) + A056170(n). - Amiram Eldar, Jan 09 2024

A290106 a(1) = 1; for n > 1, if n = Product prime(k)^e(k), then a(n) = Product (k)^(e(k)-1).

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 3, 1, 4, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 4, 3, 1, 1, 1, 4, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 3, 1, 1, 1, 1, 1, 8, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 4, 2, 3, 1, 1, 1, 1, 1, 1, 1, 4, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1
Offset: 1

Views

Author

Antti Karttunen, Aug 13 2017

Keywords

Examples

			For n = 21 = 3*7 = prime(2)^1 * prime(4)^1, a(n) = 2^0 * 4^0 = 1*1 = 1.
For n = 360 = 2^3 * 3^2 * 5^1 = prime(1)^3 * prime(2)^2 * prime(3)^1, a(n) = 1^2 * 2^1 * 3^0 = 1*2*1 = 2.
		

Crossrefs

Differs from A290104 for the first time at n=21.

Programs

Formula

Multiplicative with a(prime(k)^e) = k^(e-1).
a(n) = A003963(n) / A156061(n).
a(n) = A003963(A003557(n)) = A003963(n/A007947(n)).

A106490 Total number of bases and exponents in Quetian Superfactorization of n, excluding the unity-exponents at the tips of branches.

Original entry on oeis.org

0, 1, 1, 2, 1, 2, 1, 2, 2, 2, 1, 3, 1, 2, 2, 3, 1, 3, 1, 3, 2, 2, 1, 3, 2, 2, 2, 3, 1, 3, 1, 2, 2, 2, 2, 4, 1, 2, 2, 3, 1, 3, 1, 3, 3, 2, 1, 4, 2, 3, 2, 3, 1, 3, 2, 3, 2, 2, 1, 4, 1, 2, 3, 3, 2, 3, 1, 3, 2, 3, 1, 4, 1, 2, 3, 3, 2, 3, 1, 4, 3, 2, 1, 4, 2, 2, 2, 3, 1, 4, 2, 3, 2, 2, 2, 3, 1, 3, 3, 4, 1, 3
Offset: 1

Views

Author

Antti Karttunen, May 09 2005 based on Leroy Quet's message ('Super-Factoring' An Integer) posted to SeqFan-mailing list on Dec 06 2003

Keywords

Comments

Quetian Superfactorization proceeds by factoring a natural number to its unique prime-exponent factorization (p1^e1 * p2^e2 * ... pj^ej) and then factoring recursively each of the (nonzero) exponents in similar manner, until unity-exponents are finally encountered.

Examples

			a(64) = 3, as 64 = 2^6 = 2^(2^1*3^1) and there are three non-1 nodes in that superfactorization. Similarly, for 360 = 2^(3^1) * 3^(2^1) * 5^1 we get a(360) = 5. a(65536) = a(2^(2^(2^(2^1)))) = 4.
		

Crossrefs

Cf. A276230 (gives first k such that a(k) = n, i.e., this sequence is a left inverse of A276230).
After n=1 differs from A038548 for the first time at n=24, where A038548(24)=4, while a(24)=3.

Programs

  • Maple
    a:= proc(n) option remember; `if`(n=1, 0,
          add(1+a(i[2]), i=ifactors(n)[2]))
        end:
    seq(a(n), n=1..100);  # Alois P. Heinz, Nov 07 2014
  • Mathematica
    a[n_] := a[n] = If[n == 1, 0, Sum[1 + a[i[[2]]], {i,FactorInteger[n]}]]; Table[a[n], {n, 1, 100}] (* Jean-François Alcover, Nov 11 2015, after Alois P. Heinz *)
  • PARI
    A067029(n) = if(n<2, 0, factor(n)[1,2]);
    A028234(n) = my(f = factor(n)); if (#f~, f[1, 1] = 1); factorback(f); /* after Michel Marcus */
    a(n) = if(n<2, 0, 1 + a(A067029(n)) + a(A028234(n)));
    for(n=1, 150, print1(a(n),", ")) \\ Indranil Ghosh, Mar 23 2017, after formula by Antti Karttunen

Formula

Additive with a(p^e) = 1 + a(e).
a(1) = 0; for n > 1, a(n) = 1 + a(A067029(n)) + a(A028234(n)). - Antti Karttunen, Mar 23 2017
Other identities. For all n >= 1:
a(A276230(n)) = n.
a(n) = A106493(A106444(n)).
a(n) = A106491(n) - A064372(n).

A124859 Multiplicative with p^e -> primorial(e), p prime and e > 0.

Original entry on oeis.org

1, 2, 2, 6, 2, 4, 2, 30, 6, 4, 2, 12, 2, 4, 4, 210, 2, 12, 2, 12, 4, 4, 2, 60, 6, 4, 30, 12, 2, 8, 2, 2310, 4, 4, 4, 36, 2, 4, 4, 60, 2, 8, 2, 12, 12, 4, 2, 420, 6, 12, 4, 12, 2, 60, 4, 60, 4, 4, 2, 24, 2, 4, 12, 30030, 4, 8, 2, 12, 4, 8, 2, 180, 2, 4, 12, 12, 4, 8, 2, 420, 210, 4, 2, 24, 4, 4
Offset: 1

Views

Author

Reinhard Zumkeller, Nov 10 2006

Keywords

Examples

			From _Michael De Vlieger_, Mar 06 2017: (Start)
a(2) = 2 since 2 = 2^1, thus primorial p_1# = 2.
a(4) = 6 since 4 = 2^2, thus primorial p_2# = 2*3 = 6.
a(6) = 4 because 6 is squarefree with omega(6)=2, thus 2^2 = 4.
a(8) = 30 since 8 = 2^3, thus primorial p_3# = 2*3*5 = 30.
a(10) = 4 since 10 is squarefree with omega(10)=2, thus 2^2 = 4.
a(12) = 12 since 12 = 2^1 * 3^2, thus primorials p_1# * p_2# = 2*6 = 12.
(End)
		

Crossrefs

Programs

  • Maple
    A124859 := proc(n)
        local a,pf;
        a := 1;
        for pf in ifactors(n)[2] do
            a := a*A002110(pf[2]) ;
        end do:
        a ;
    end proc:
    seq(A124859(n),n=1..80) ; # R. J. Mathar, Oct 06 2017
  • Mathematica
    Table[Which[n == 1, 1, SquareFreeQ@ n, 2^PrimeNu@ n, True, Times @@ Map[Times @@ Prime@ Range@ # &, #[[All, -1]]]] &@ FactorInteger@ n, {n, 86}] (* Michael De Vlieger, Mar 06 2017 *)
  • PARI
    a(n) = {my(f = factor(n)); for (k=1, #f~, f[k,1] = prod(j=1, f[k,2], prime(j)); f[k,2] = 1;); factorback(f);} \\ Michel Marcus, Nov 16 2015
    
  • Python
    from sympy.ntheory.factor_ import core
    from sympy import factorint, primorial, primefactors
    from operator import mul
    def omega(n): return 0 if n==1 else len(primefactors(n))
    def a(n):
        f=factorint(n)
        return n if n<3 else 2**omega(n) if core(n) == n else reduce(mul, [primorial(f[i]) for i in f]) # Indranil Ghosh, May 13 2017
  • Scheme
    (define (A124859 n) (cond ((= 1 n) 1) (else (* (A002110 (A067029 n)) (A124859 (A028234 n)))))) ;; Antti Karttunen, Mar 06 2017
    

Formula

a(A000040(x)^n) = A002110(n); a(A002110(n)) = A000079(n);
a(A005117(n)) = 2^A001221(A005117(n)) = A072048(n);
A001221(a(n)) = A051903(n); A001222(a(n)) = A001222(n).
From Antti Karttunen, Mar 06 2017: (Start)
a(1) = 1, for n > 1, a(n) = A002110(A067029(n)) * a(A028234(n)).
a(n) = A278159(A156552(n)).
a(A278159(n)) = A278222(n).
a(a(n)) = A046523(n). [after Matthew Vandermast's May 19 2012 formula for the latter sequence]
A181819(a(n)) = A238745(n). [after Matthew Vandermast's formula for the latter sequence]
(End)
a(n) = A108951(A181819(n)). [Primorial inflation of the prime shadow of n] - Antti Karttunen, Sep 15 2023

A276079 Numbers n such that prime(k)^(k+1) divides n for some k.

Original entry on oeis.org

4, 8, 12, 16, 20, 24, 27, 28, 32, 36, 40, 44, 48, 52, 54, 56, 60, 64, 68, 72, 76, 80, 81, 84, 88, 92, 96, 100, 104, 108, 112, 116, 120, 124, 128, 132, 135, 136, 140, 144, 148, 152, 156, 160, 162, 164, 168, 172, 176, 180, 184, 188, 189, 192, 196, 200, 204, 208, 212, 216, 220, 224, 228, 232, 236, 240, 243, 244, 248, 252, 256, 260, 264, 268, 270, 272
Offset: 1

Views

Author

Antti Karttunen, Aug 18 2016

Keywords

Comments

The asymptotic density of this sequence is 1 - Product_{i>=1} 1-prime(i)^(-1-i) = 0.2789766... - Amiram Eldar, Oct 21 2020

Examples

			625 = 5*5*5*5 = prime(3)^4 so it is divisible by prime(3)^(3+1), and thus 625 is included in the sequence.
		

Crossrefs

Positions of nonzeros in A276077.
Complement: A276078.
Cf. A000040, A000720, A008586 (a subsequence).
Differs from its subsequence A100716 for the first time at n=175, where a(175) = 625, while that value is missing from A100716.

Programs

  • Python
    from sympy import primepi, isprime, primefactors, factorint
    def a028234(n):
        f=factorint(n)
        minf = min(f)
        return 1 if n==1 else n//(minf**f[minf])
    def a067029(n):
        f=factorint(n)
        return 0 if n==1 else f[min(f)]
    def a049084(n): return primepi(n) if isprime(n) else 0
    def a055396(n): return 0 if n==1 else a049084(min(primefactors(n)))
    def a(n): return 0 if n==1 else a(a028234(n)) + (1 if a067029(n) > a055396(n) else 0)
    print([n for n in range(1, 301) if a(n)!=0]) # Indranil Ghosh, Jun 21 2017
Previous Showing 51-60 of 151 results. Next