cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 34 results. Next

A361950 Array read by antidiagonals: T(n,k) = n! * Sum_{s} 2^(Sum_{i=1..k-1} s(i)*s(i+1))/(Product_{i=1..k} s(i)!) where the sum is over all nonnegative compositions s of n into k parts.

Original entry on oeis.org

1, 1, 0, 1, 1, 0, 1, 2, 1, 0, 1, 3, 6, 1, 0, 1, 4, 13, 26, 1, 0, 1, 5, 22, 81, 162, 1, 0, 1, 6, 33, 166, 721, 1442, 1, 0, 1, 7, 46, 287, 1726, 9153, 18306, 1, 0, 1, 8, 61, 450, 3309, 24814, 165313, 330626, 1, 0, 1, 9, 78, 661, 5650, 50975, 494902, 4244481, 8488962, 1, 0
Offset: 0

Views

Author

Andrew Howroyd, Mar 31 2023

Keywords

Comments

T(n,k) corresponds to c(k,n) in the Klarner reference. This is an intermediate step in the computation of the number of labeled weakly graded (ranked) posets. The number of elements in the poset is n and the rank k.

Examples

			Array begins:
======================================================
n/k| 0 1      2       3        4        5        6 ...
---+--------------------------------------------------
0  | 1 1      1       1        1        1        1 ...
1  | 0 1      2       3        4        5        6 ...
2  | 0 1      6      13       22       33       46 ...
3  | 0 1     26      81      166      287      450 ...
4  | 0 1    162     721     1726     3309     5650 ...
5  | 0 1   1442    9153    24814    50975    91866 ...
6  | 0 1  18306  165313   494902  1058493  1957066 ...
7  | 0 1 330626 4244481 13729846 29885567 55363650 ...
  ...
T(3,2) = 26: the nonnegative integer compositions of 3 with 2 parts are (0,3), (1,2), (2,1), (3,0). These contribute, respectively 2^0*3!/(0!*3!) = 1, 2^2*3!/(1!*2!) = 12, 2^2*3!/(2!*1!) = 12, 2^0*3!/(0!*3!) = 1, so T(3,2) = 1 + 12 + 12 + 1 = 26.
		

Crossrefs

Rows 0..2 are A000012, A000027, A028872(n+1).
The unlabeled version is A361952.
Cf. A361951.

Programs

  • PARI
    S(M)={matrix(#M, #M, i, j, sum(k=0, i-j, 2^((j-1)*k)*M[i-j+1,k+1])/(j-1)! )}
    C(n, m=n)={my(M=matrix(n+1, n+1), c=vector(m+1), A=O(x*x^n)); M[1, 1]=1; c[1]=1+A; for(h=1, m, M=S(M); c[h+1]=sum(i=0, n, vecsum(M[i+1, ])*x^i, A)); c}
    R(n)={Mat([Col(serlaplace(p)) | p<-C(n)])}
    { my(A=R(6)); for(i=1, #A, print(A[i,])) }

A028874 Primes of form k^2 - 3.

Original entry on oeis.org

13, 61, 97, 193, 397, 673, 1021, 1153, 1597, 1933, 2113, 3361, 4093, 4621, 6397, 7393, 7741, 8461, 9601, 12097, 12541, 13921, 15373, 16381, 18493, 19597, 20161, 21313, 26893, 29581, 36097, 37633, 40801, 42433, 43261, 47521, 48397
Offset: 1

Views

Author

Keywords

Comments

Also primes equal to the product of two consecutive odd numbers (A000466) minus 2. - Giovanni Teofilatto, Feb 11 2010
All terms are of the form 6m + 1. - Zak Seidov, May 01 2014

Examples

			61 is prime and equal to 8^2 - 3, so it is in the sequence.
67 is prime but it's 8^2 + 3 = 9^2 - 14, so it is not in the sequence.
9^2 - 3 = 78 but it's composite, so it's not in the sequence either.
		

Crossrefs

Cf. A002476 (Primes of form 6m + 1), A028871, A028872, A028873.
Primes terms in A082109. Subsequence of A068228. - Klaus Purath, Jan 09 2023

Programs

Formula

A028872 INTERSECT A000040. - Klaus Purath, Dec 07 2020
a(n) = A028873(n)^2 - 3. - Amiram Eldar, Mar 01 2025

A156140 Accumulation of Stern's diatomic series: a(0)=-1, a(1)=0, and a(n+1) = (2e(n)+1)*a(n) - a(n-1) for n > 1, where e(n) is the highest power of 2 dividing n.

Original entry on oeis.org

-1, 0, 1, 3, 2, 7, 5, 8, 3, 13, 10, 17, 7, 18, 11, 15, 4, 21, 17, 30, 13, 35, 22, 31, 9, 32, 23, 37, 14, 33, 19, 24, 5, 31, 26, 47, 21, 58, 37, 53, 16, 59, 43, 70, 27, 65, 38, 49, 11, 50, 39, 67, 28, 73, 45, 62, 17, 57, 40, 63, 23, 52, 29, 35, 6, 43, 37, 68, 31, 87, 56, 81, 25, 94, 69
Offset: 0

Views

Author

Arie Werksma (Werksma(AT)Tiscali.nl), Feb 04 2009

Keywords

Crossrefs

From Yosu Yurramendi, Mar 09 2018: (Start)
a(2^m + 0) = A000027(m), m >= 0.
a(2^m + 1) = A002061(m+2), m >= 1.
a(2^m + 2) = A002522(m), m >= 2.
a(2^m + 3) = A033816(m-1), m >= 2.
a(2^m + 4) = A002061(m), m >= 2.
a(2^m + 5) = A141631(m), m >= 3.
a(2^m + 6) = A084849(m-1), m >= 3.
a(2^m + 7) = A056108(m-1), m >= 3.
a(2^m + 8) = A000290(m-1), m >= 3.
a(2^m + 9) = A185950(m-1), m >= 4.
a(2^m + 10) = A144390(m-1), m >= 4.
a(2^m + 12) = A014106(m-2), m >= 4.
a(2^m + 16) = A028387(m-3), m >= 4.
a(2^m + 18) = A250657(m-4), m >= 5.
a(2^m + 20) = A140677(m-3), m >= 5.
a(2^m + 32) = A028872(m-2), m >= 5.
a(2^m - 1) = A005563(m-1), m >= 0.
a(2^m - 2) = A028387(m-2), m >= 2.
a(2^m - 3) = A033537(m-2), m >= 2.
a(2^m - 4) = A008865(m-1), m >= 3.
a(2^m - 7) = A140678(m-3), m >= 3.
a(2^m - 8) = A014209(m-3), m >= 4.
a(2^m - 16) = A028875(m-2), m >= 5.
a(2^m - 32) = A108195(m-5), m >= 6.
(End)

Programs

  • Maple
    A156140 := proc(n)
        option remember ;
        if n <= 1 then
            n-1 ;
        else
            (2*A007814(n-1)+1)*procname(n-1)-procname(n-2) ;
        end if;
    end proc:
    seq(A156140(n),n=0..80) ; # R. J. Mathar, Mar 14 2009
  • Mathematica
    Fold[Append[#1, (2 IntegerExponent[#2, 2] + 1) #1[[-1]] - #1[[-2]] ] &, {-1, 0}, Range[73]] (* Michael De Vlieger, Mar 09 2018 *)
  • PARI
    first(n)=my(v=vector(n+1)); v[1]=-1; v[2]=0; for(k=1,n-1,v[k+2]=(2*valuation(k,2)+1)*v[k+1] - v[k]); v \\ Charles R Greathouse IV, Apr 05 2016
    
  • PARI
    fusc(n)=my(a=1, b=0); while(n>0, if(bitand(n, 1), b+=a, a+=b); n>>=1); b
    a(n)=my(m=1,s,t); if(n==0, return(-1)); while(n%2==0, s+=fusc(n>>=1)); while(n>1, t=logint(n,2); n-=2^t; s+=m*fusc(n)*(t^2+t+1); m*=-t); m*(n-1) + s \\ Charles R Greathouse IV, Dec 13 2016
    
  • R
    a <- c(0,1)
    maxlevel <- 6 # by choice
    for(m in 1:maxlevel) {
      a[2^(m+1)] <- m + 1
      for(k in 1:(2^m-1)) {
        r <- m - floor(log2(k)) - 1
        a[2^r*(2*k+1)] <- a[2^r*(2*k)] + a[2^r*(2*k+2)]
    }}
    a
    # Yosu Yurramendi, May 08 2018

Formula

Let b(n) = A002487(n), Stern's diatomic series.
a(n+1)*b(n) - a(n)*b(n+1) = 1 for n >= 0.
a(2n+1) = a(n) + a(n+1) + b(n) + b(n+1) for n >= 0.
a(2n) = a(n) + b(n) for n >= 0.
a(2^n + k) = -n*a(k) + (n^2 + n + 1)*b(k) for 0 <= k <= 2^n.
b(2^n + k) = -a(k) + (n + 1)*b(k) for 0 <= k <= 2^n.
a(2^m + k) = b(2^m+k)*m + b(k), m >= 0, 0 <= k < 2^m. - Yosu Yurramendi, Mar 09 2018
a(2^(m+1)+2^m+1) = 2*m+1, m >= 0. - Yosu Yurramendi, Mar 09 2018
From Yosu Yurramendi, May 08 2018: (Start)
a(2^m) = m, m >= 0.
a(2^r*(2*k+1)) = a(2^r*(2*k)) + a(2^r*(2*k+2)), r = m - floor(log_2(k)) - 1, m > 0, 1 <= k < 2^m.
(End)

A115009 Array read by antidiagonals: let V(m,n) = Sum_{i=1..m, j=1..n, gcd(i,j)=1} (m+1-i)*(n+1-j), then T(m,n) = 2*m*n+m+n+2*V(m,n), for m >= 0, n >= 0.

Original entry on oeis.org

0, 1, 1, 2, 6, 2, 3, 13, 13, 3, 4, 22, 28, 22, 4, 5, 33, 49, 49, 33, 5, 6, 46, 74, 86, 74, 46, 6, 7, 61, 105, 131, 131, 105, 61, 7, 8, 78, 140, 188, 200, 188, 140, 78, 8, 9, 97, 181, 251, 289, 289, 251, 181, 97, 9, 10, 118, 226, 326, 386, 418, 386, 326, 226, 118, 10, 11, 141, 277
Offset: 0

Views

Author

N. J. A. Sloane, Feb 24 2006

Keywords

Comments

This is the number of linear partitions of an m X n grid.

Examples

			The array begins:
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, ...
1, 6, 13, 22, 33, 46, 61, 78, 97, 118, ...
2, 13, 28, 49, 74, 105, 140, 181, 226, 277, ...
3, 22, 49, 86, 131, 188, 251, 326, 409, 502, ...
4, 33, 74, 131, 200, 289, 386, 503, 632, 777, ...
5, 46, 105, 188, 289, 418, 559, 730, 919, 1132, ...
6, 61, 140, 251, 386, 559, 748, 979, 1234, 1521, ...
7, 78, 181, 326, 503, 730, 979, 1282, 1617, 1994, ...
...
		

References

  • D. M. Acketa, J. D. Zunic: On the number of linear partitions of the (m,n)-grid. Inform. Process. Lett., 38 (3) (1991), 163-168. See Table A.1.
  • Jovisa Zunic, Note on the number of two-dimensional threshold functions, SIAM J. Discrete Math. Vol. 25 (2011), No. 3, pp. 1266-1268. See Equation (1.2).

Crossrefs

The second and third rows are A028872 and A358296.
The main diagonal is A141255 = A114043 - 1.
The lower triangle is A332351.

Programs

  • Maple
    V:=proc(m,n) local t1,i,j; t1:=0; for i from 1 to m do for j from 1 to n do if gcd(i,j)=1 then t1:=t1+(m+1-i)*(n+1-j); fi; od; od; t1; end; T:=(m,n)->(2*m*n+m+n+2*V(m,n));
  • Mathematica
    V[m_, n_] := Sum[If[GCD[i, j] == 1, (m-i+1)*(n-j+1), 0], {i, 1, m}, {j, 1, n}]; T[m_, n_] := 2*m*n+m+n+2*V[m, n]; Table[T[m-n, n], {m, 0, 11}, {n, 0, m}] // Flatten (* Jean-François Alcover, Jan 08 2014 *)

A123968 a(n) = n^2 - 3, starting at n=1.

Original entry on oeis.org

-2, 1, 6, 13, 22, 33, 46, 61, 78, 97, 118, 141, 166, 193, 222, 253, 286, 321, 358, 397, 438, 481, 526, 573, 622, 673, 726, 781, 838, 897, 958, 1021, 1086, 1153, 1222, 1293, 1366, 1441, 1518, 1597, 1678, 1761, 1846, 1933, 2022, 2113, 2206, 2301, 2398, 2497
Offset: 1

Views

Author

Gary W. Adamson and Roger L. Bagula, Oct 29 2006

Keywords

Comments

Essentially the same as A028872 (n^2-3 with offset 2).
a(n) is the constant term of the quadratic factor of the characteristic polynomial of the 5 X 5 tridiagonal matrix M_n with M_n(i,j) = n for i = j, M_n(i,j) = -1 for i = j+1 and i = j-1, M_n(i,j) = 0 otherwise.
The characteristic polynomial of M_n is (x-(n-1))*(x-n)*(x-(n+1))*(x^2-2*n*x+c) with c = n^2-3.
The characteristic polynomials are related to chromatic polynomials, cf. links. They have roots n+sqrt(3).

Examples

			The quadratic factors of the characteristic polynomials of M_n for n = 1..6 are
  x^2 -  2*x -  2,
  x^2 -  4*x +  1,
  x^2 -  6*x +  6,
  x^2 -  8*x + 13,
  x^2 - 10*x + 22,
  x^2 - 12*x + 33.
		

Crossrefs

Essentially the same: A028872, A267874.

Programs

  • Magma
    mat:=func< n | Matrix(IntegerRing(), 5, 5, [< i, j, i eq j select n else (i eq j+1 or i eq j-1) select -1 else 0 > : i, j in [1..5] ]) >; [ Coefficients(Factorization(CharacteristicPolynomial(mat(n)))[4][1])[1]:n in [1..50] ]; // Klaus Brockhaus, Nov 13 2010
    
  • Maple
    with(combinat):seq(fibonacci(3, i)-4,i=1..55); # Zerinvary Lajos, Mar 20 2008
  • Mathematica
    M[n_] := {{n, -1, 0, 0, 0}, {-1, n, -1, 0, 0}, {0, -1, n, -1, 0}, {0, 0, -1, n, -1}, {0, 0, 0, -1, n}}; p[n_, x_] = Factor[CharacteristicPolynomial[M[n], x]] Table[ -3 + n^2, {n, 1, 25}]
  • PARI
    A123968(n) = n^2-3   /* or: */
    
  • PARI
    a(n)=polcoeff(factor(charpoly(matrix(5,5,i,j,if(abs(i-j)>1,0,if(i==j,n,-1)))))[4,1], 0)

Formula

a(n) = 2*n + a(n-1) - 1. - Vincenzo Librandi, Nov 12 2010
G.f.: x*(-2+x)*(1-3*x)/(1-x)^3. - Colin Barker, Jan 29 2012
From Elmo R. Oliveira, Jan 16 2025: (Start)
E.g.f.: exp(x)*(x^2 + x - 3) + 3.
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n > 3. (End)

Extensions

Edited and extended by Klaus Brockhaus, Nov 13 2010
Definition simplified by M. F. Hasler, Nov 12 2010

A190576 a(n) = n^2 + 5*n - 5.

Original entry on oeis.org

1, 9, 19, 31, 45, 61, 79, 99, 121, 145, 171, 199, 229, 261, 295, 331, 369, 409, 451, 495, 541, 589, 639, 691, 745, 801, 859, 919, 981, 1045, 1111, 1179, 1249, 1321, 1395, 1471, 1549, 1629, 1711, 1795, 1881, 1969, 2059, 2151, 2245, 2341
Offset: 1

Views

Author

Keywords

Comments

Also a(n) = n^2 + 9*n + 9 if the offset is changed to -1. - R. J. Mathar, May 18 2011

Crossrefs

Cf. sequences of the form n^2 + k*n - k : A000290 (k=0), A028387 (k=1), A028872 (k=2), A082111 (k=3), A028884 (k=4).

Programs

Formula

G.f.: x*(-1 - 6*x + 5*x^2) / (x-1)^3. - R. J. Mathar, May 18 2011
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3); a(1)=1, a(2)=9, a(3)=19. - Harvey P. Dale, May 28 2015
Sum_{n>=1} 1/a(n) = 199/495 + Pi*tan(3*sqrt(5)*Pi/2)/(3*sqrt(5)). - Amiram Eldar, Jan 18 2021

A213921 Natural numbers placed in table T(n,k) layer by layer. The order of placement: at the beginning filled odd places of layer clockwise, next - even places clockwise. Table T(n,k) read by antidiagonals.

Original entry on oeis.org

1, 2, 3, 5, 4, 7, 10, 8, 9, 13, 17, 14, 6, 16, 21, 26, 22, 11, 12, 25, 31, 37, 32, 18, 15, 20, 36, 43, 50, 44, 27, 23, 24, 30, 49, 57, 65, 58, 38, 33, 19, 35, 42, 64, 73, 82, 74, 51, 45, 28, 29, 48, 56, 81, 91, 101, 92, 66, 59, 39, 34, 41, 63, 72, 100, 111
Offset: 1

Views

Author

Boris Putievskiy, Mar 05 2013

Keywords

Comments

A permutation of the natural numbers.
a(n) is a pairing function: a function that reversibly maps Z^{+} x Z^{+} onto Z^{+}, where Z^{+} is the set of integer positive numbers.
Layer is pair of sides of square from T(1,n) to T(n,n) and from T(n,n) to T(n,1). Enumeration table T(n,k) is layer by layer. The order of the list:
T(1,1)=1;
T(1,2), T(2,1), T(2,2);
. . .
T(1,n), T(3,n), ... T(n,3), T(n,1), T(2,n), T(4,n), ... T(n,4), T(n,2);
...

Examples

			The start of the sequence as table:
   1   2   5  10  17  26 ...
   3   4   8  14  22  32 ...
   7   9   6  11  18  27 ...
  13  16  12  15  23  33 ...
  21  25  20  24  19  28 ...
  31  36  30  35  29  34 ...
  ...
The start of the sequence as triangle array read by rows:
   1;
   2,  3;
   5,  4,  7;
  10,  8,  9, 13;
  17, 14,  6, 16, 21;
  26, 22, 11, 12, 25, 31;
  ...
		

Crossrefs

Programs

  • Python
    t=int((math.sqrt(8*n-7) - 1)/ 2)
    i=n-t*(t+1)/2
    j=(t*t+3*t+4)/2-n
    if i > j:
       result=i*i-(j%2)*i+2-int((j+2)/2)
    else:
       result=j*j-((i%2)+1)*j + int((i+3)/2)

Formula

As a table:
T(n,k) = n*n - (k mod 2)*n + 2 - floor((k+2)/2), if n>k;
T(n,k) = k*k - ((n mod 2)+1)*k + floor((n+3)/2), if n<=k.
As a linear sequence:
a(n) = i*i - (j mod 2)*i + 2 - floor((j+2)/2), if i>j;
a(n) = j*j - ((i mod 2)+1)*j + floor((i+3)/2), if i<=j; where i = n-t*(t+1)/2, j = (t*t+3*t+4)/2-n, t = floor((-1+sqrt(8*n-7))/2).

A213922 Natural numbers placed in table T(n,k) layer by layer. The order of placement: T(n,n), T(n-1,n), T(n,n-1), ... T(1,n), T(n,1). Table T(n,k) read by antidiagonals.

Original entry on oeis.org

1, 3, 4, 8, 2, 9, 15, 6, 7, 16, 24, 13, 5, 14, 25, 35, 22, 11, 12, 23, 36, 48, 33, 20, 10, 21, 34, 49, 63, 46, 31, 18, 19, 32, 47, 64, 80, 61, 44, 29, 17, 30, 45, 62, 81, 99, 78, 59, 42, 27, 28, 43, 60, 79, 100, 120, 97, 76, 57, 40, 26, 41, 58, 77, 98, 121
Offset: 1

Views

Author

Boris Putievskiy, Mar 05 2013

Keywords

Comments

Permutation of the natural numbers.
a(n) is a pairing function: a function that reversibly maps Z^{+} x Z^{+} onto Z^{+}, where Z^{+} is the set of integer positive numbers.
Layer is pair of sides of square from T(1,n) to T(n,n) and from T(n,n) to T(n,1). Enumeration table T(n,k) is layer by layer. The order of the list:
T(1,1)=1;
T(2,2), T(1,2), T(2,1);
...
T(n,n), T(n-1,n), T(n,n-1), ... T(1,n), T(n,1);
...

Examples

			The start of the sequence as a table:
   1,  3,  8, 15, 24, 35, ...
   4,  2,  6, 13, 22, 33, ...
   9,  7,  5, 11, 20, 31, ...
  16, 14, 12, 10, 18, 29, ...
  25, 23, 21, 19, 17, 27, ...
  36, 34, 32, 30, 28, 26, ...
...
The start of the sequence as triangular array read by rows:
   1;
   3,  4;
   8,  2,  9;
  15,  6,  7, 16;
  24, 13,  5, 14, 25;
  35, 22, 11, 12, 23, 36;
  ...
		

Crossrefs

Cf. A060734, A060736; table T(n,k) contains: in rows A005563, A028872, A028875, A028881, A028560, A116711; in columns A000290, A008865, A028347, A028878, A028884.

Programs

  • Mathematica
    f[n_, k_] := n^2 - 2*k + 2 /; n >= k; f[n_, k_] := k^2 - 2*n + 1 /; n < k; TableForm[Table[f[n, k], {n, 1, 5}, {k, 1, 10}]]; Table[f[n - k + 1, k], {n, 5}, {k, n, 1, -1}] // Flatten (* G. C. Greubel, Aug 19 2017 *)
  • Python
    t=int((math.sqrt(8*n-7) - 1)/ 2)
    i=n-t*(t+1)/2
    j=(t*t+3*t+4)/2-n
    if i >= j:
       result=i*i-2*j+2
    else:
       result=j*j-2*i+1

Formula

As a table,
T(n,k) = n*n - 2*k + 2, if n >= k;
T(n,k) = k*k - 2*n + 1, if n < k.
As a linear sequence,
a(n) = i*i - 2*j + 2, if i >= j;
a(n) = j*j - 2*i + 1, if i < j
where
i = n - t*(t+1)/2,
j = (t*t + 3*t + 4)/2 - n,
t = floor((-1 + sqrt(8*n-7))/2).

A267874 Total number of ON (black) cells after n iterations of the "Rule 235" elementary cellular automaton starting with a single ON (black) cell.

Original entry on oeis.org

1, 2, 6, 13, 22, 33, 46, 61, 78, 97, 118, 141, 166, 193, 222, 253, 286, 321, 358, 397, 438, 481, 526, 573, 622, 673, 726, 781, 838, 897, 958, 1021, 1086, 1153, 1222, 1293, 1366, 1441, 1518, 1597, 1678, 1761, 1846, 1933, 2022, 2113, 2206, 2301, 2398, 2497
Offset: 0

Views

Author

Robert Price, Jan 21 2016

Keywords

Comments

With the exception of the first one or two entries the same as A123968 and A028872. - R. J. Mathar, Jan 24 2016

Crossrefs

Programs

  • Mathematica
    rule=235; rows=20; ca=CellularAutomaton[rule,{{1},0},rows-1,{All,All}]; (* Start with single black cell *) catri=Table[Take[ca[[k]],{rows-k+1,rows+k-1}],{k,1,rows}]; (* Truncated list of each row *) nbc=Table[Total[catri[[k]]],{k,1,rows}]; (* Number of Black cells in stage n *) Table[Total[Take[nbc,k]],{k,1,rows}] (* Number of Black cells through stage n *)

Formula

From Colin Barker, Jan 22 2016 and Apr 20 2019: (Start)
a(n) = 3*a(n-1)-3*a(n-2)+a(n-3) for n>2.
G.f.: (1-x+3*x^2-x^4) / (1-x)^3.
(End)

A349947 Triangular array: row n gives the positions of n+1 in A349946.

Original entry on oeis.org

1, 2, 4, 3, 5, 9, 6, 7, 10, 16, 8, 11, 12, 17, 25, 13, 14, 18, 19, 26, 36, 15, 20, 21, 27, 28, 37, 49, 22, 23, 29, 30, 38, 39, 50, 64, 24, 31, 32, 40, 41, 51, 52, 65, 81, 33, 34, 42, 43, 53, 54, 66, 67, 82, 100, 35, 44, 45, 55, 56, 68, 69, 83, 84, 101, 121
Offset: 1

Views

Author

Clark Kimberling, Dec 07 2021

Keywords

Comments

Every positive integer occurs exactly once, so as a sequence, this is a permutation of the positive integers.
Row n ends in n^2. The first term in row n is (1 + n/1)^2 - 3 if n >= 4 and n is even; as in A028872(n) for n >= 3.
The first term in row n is ((n+1)/2)^2 - 1 if n >= 3 and n is odd, as in A132411(n) for n >= 3.

Examples

			First 7 rows:
   1
   2   4
   3   5   9
   6   7  10  16
   8  11  12  17  25
  13  14  18  19  26  36
  14  20  21  27  28  37  49
		

Crossrefs

Programs

  • Mathematica
    t = {1, 1}; Do[t = Join[t, Riffle[Range[n], n], {n}], {n, 2, 100}];
    u = Flatten[Partition[t, 2]];
    v = Table[n (n + 1), {n, 1, 80}];
    d = Delete[u, Map[{#} &, v]]; (* A349526 *)
    p = Table[{d[[n]], d[[n + 1]]}, {n, 1, 150}];
    q = Map[Total, p]  (* A349946 *)
    r = Table[Flatten[Position[q, n]], {n, 2, 12}]  (* A349947 array *)
    Flatten[r]  (* A349947 sequence *)
Previous Showing 11-20 of 34 results. Next