A361950
Array read by antidiagonals: T(n,k) = n! * Sum_{s} 2^(Sum_{i=1..k-1} s(i)*s(i+1))/(Product_{i=1..k} s(i)!) where the sum is over all nonnegative compositions s of n into k parts.
Original entry on oeis.org
1, 1, 0, 1, 1, 0, 1, 2, 1, 0, 1, 3, 6, 1, 0, 1, 4, 13, 26, 1, 0, 1, 5, 22, 81, 162, 1, 0, 1, 6, 33, 166, 721, 1442, 1, 0, 1, 7, 46, 287, 1726, 9153, 18306, 1, 0, 1, 8, 61, 450, 3309, 24814, 165313, 330626, 1, 0, 1, 9, 78, 661, 5650, 50975, 494902, 4244481, 8488962, 1, 0
Offset: 0
Array begins:
======================================================
n/k| 0 1 2 3 4 5 6 ...
---+--------------------------------------------------
0 | 1 1 1 1 1 1 1 ...
1 | 0 1 2 3 4 5 6 ...
2 | 0 1 6 13 22 33 46 ...
3 | 0 1 26 81 166 287 450 ...
4 | 0 1 162 721 1726 3309 5650 ...
5 | 0 1 1442 9153 24814 50975 91866 ...
6 | 0 1 18306 165313 494902 1058493 1957066 ...
7 | 0 1 330626 4244481 13729846 29885567 55363650 ...
...
T(3,2) = 26: the nonnegative integer compositions of 3 with 2 parts are (0,3), (1,2), (2,1), (3,0). These contribute, respectively 2^0*3!/(0!*3!) = 1, 2^2*3!/(1!*2!) = 12, 2^2*3!/(2!*1!) = 12, 2^0*3!/(0!*3!) = 1, so T(3,2) = 1 + 12 + 12 + 1 = 26.
-
S(M)={matrix(#M, #M, i, j, sum(k=0, i-j, 2^((j-1)*k)*M[i-j+1,k+1])/(j-1)! )}
C(n, m=n)={my(M=matrix(n+1, n+1), c=vector(m+1), A=O(x*x^n)); M[1, 1]=1; c[1]=1+A; for(h=1, m, M=S(M); c[h+1]=sum(i=0, n, vecsum(M[i+1, ])*x^i, A)); c}
R(n)={Mat([Col(serlaplace(p)) | p<-C(n)])}
{ my(A=R(6)); for(i=1, #A, print(A[i,])) }
A028874
Primes of form k^2 - 3.
Original entry on oeis.org
13, 61, 97, 193, 397, 673, 1021, 1153, 1597, 1933, 2113, 3361, 4093, 4621, 6397, 7393, 7741, 8461, 9601, 12097, 12541, 13921, 15373, 16381, 18493, 19597, 20161, 21313, 26893, 29581, 36097, 37633, 40801, 42433, 43261, 47521, 48397
Offset: 1
61 is prime and equal to 8^2 - 3, so it is in the sequence.
67 is prime but it's 8^2 + 3 = 9^2 - 14, so it is not in the sequence.
9^2 - 3 = 78 but it's composite, so it's not in the sequence either.
-
[a: n in [2..300] | IsPrime(a) where a is n^2-3 ]; // Vincenzo Librandi, Nov 08 2014
-
Select[Range[2, 250]^2 - 3, PrimeQ] (* Harvey P. Dale, Aug 07 2013 *)
Select[Table[n^2 - 3, {n, 2, 300}], PrimeQ] (* Vincenzo Librandi, Nov 08 2014 *)
-
select(isprime, vector(100,n,n^2-3)) \\ Charles R Greathouse IV, Nov 19 2014
A156140
Accumulation of Stern's diatomic series: a(0)=-1, a(1)=0, and a(n+1) = (2e(n)+1)*a(n) - a(n-1) for n > 1, where e(n) is the highest power of 2 dividing n.
Original entry on oeis.org
-1, 0, 1, 3, 2, 7, 5, 8, 3, 13, 10, 17, 7, 18, 11, 15, 4, 21, 17, 30, 13, 35, 22, 31, 9, 32, 23, 37, 14, 33, 19, 24, 5, 31, 26, 47, 21, 58, 37, 53, 16, 59, 43, 70, 27, 65, 38, 49, 11, 50, 39, 67, 28, 73, 45, 62, 17, 57, 40, 63, 23, 52, 29, 35, 6, 43, 37, 68, 31, 87, 56, 81, 25, 94, 69
Offset: 0
Arie Werksma (Werksma(AT)Tiscali.nl), Feb 04 2009
a(2^m + 10) =
A144390(m-1), m >= 4.
a(2^m + 12) =
A014106(m-2), m >= 4.
a(2^m + 16) =
A028387(m-3), m >= 4.
a(2^m + 18) =
A250657(m-4), m >= 5.
a(2^m + 20) =
A140677(m-3), m >= 5.
a(2^m + 32) =
A028872(m-2), m >= 5.
a(2^m - 16) =
A028875(m-2), m >= 5.
a(2^m - 32) =
A108195(m-5), m >= 6.
(End)
-
A156140 := proc(n)
option remember ;
if n <= 1 then
n-1 ;
else
(2*A007814(n-1)+1)*procname(n-1)-procname(n-2) ;
end if;
end proc:
seq(A156140(n),n=0..80) ; # R. J. Mathar, Mar 14 2009
-
Fold[Append[#1, (2 IntegerExponent[#2, 2] + 1) #1[[-1]] - #1[[-2]] ] &, {-1, 0}, Range[73]] (* Michael De Vlieger, Mar 09 2018 *)
-
first(n)=my(v=vector(n+1)); v[1]=-1; v[2]=0; for(k=1,n-1,v[k+2]=(2*valuation(k,2)+1)*v[k+1] - v[k]); v \\ Charles R Greathouse IV, Apr 05 2016
-
fusc(n)=my(a=1, b=0); while(n>0, if(bitand(n, 1), b+=a, a+=b); n>>=1); b
a(n)=my(m=1,s,t); if(n==0, return(-1)); while(n%2==0, s+=fusc(n>>=1)); while(n>1, t=logint(n,2); n-=2^t; s+=m*fusc(n)*(t^2+t+1); m*=-t); m*(n-1) + s \\ Charles R Greathouse IV, Dec 13 2016
-
a <- c(0,1)
maxlevel <- 6 # by choice
for(m in 1:maxlevel) {
a[2^(m+1)] <- m + 1
for(k in 1:(2^m-1)) {
r <- m - floor(log2(k)) - 1
a[2^r*(2*k+1)] <- a[2^r*(2*k)] + a[2^r*(2*k+2)]
}}
a
# Yosu Yurramendi, May 08 2018
A115009
Array read by antidiagonals: let V(m,n) = Sum_{i=1..m, j=1..n, gcd(i,j)=1} (m+1-i)*(n+1-j), then T(m,n) = 2*m*n+m+n+2*V(m,n), for m >= 0, n >= 0.
Original entry on oeis.org
0, 1, 1, 2, 6, 2, 3, 13, 13, 3, 4, 22, 28, 22, 4, 5, 33, 49, 49, 33, 5, 6, 46, 74, 86, 74, 46, 6, 7, 61, 105, 131, 131, 105, 61, 7, 8, 78, 140, 188, 200, 188, 140, 78, 8, 9, 97, 181, 251, 289, 289, 251, 181, 97, 9, 10, 118, 226, 326, 386, 418, 386, 326, 226, 118, 10, 11, 141, 277
Offset: 0
The array begins:
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, ...
1, 6, 13, 22, 33, 46, 61, 78, 97, 118, ...
2, 13, 28, 49, 74, 105, 140, 181, 226, 277, ...
3, 22, 49, 86, 131, 188, 251, 326, 409, 502, ...
4, 33, 74, 131, 200, 289, 386, 503, 632, 777, ...
5, 46, 105, 188, 289, 418, 559, 730, 919, 1132, ...
6, 61, 140, 251, 386, 559, 748, 979, 1234, 1521, ...
7, 78, 181, 326, 503, 730, 979, 1282, 1617, 1994, ...
...
- D. M. Acketa, J. D. Zunic: On the number of linear partitions of the (m,n)-grid. Inform. Process. Lett., 38 (3) (1991), 163-168. See Table A.1.
- Jovisa Zunic, Note on the number of two-dimensional threshold functions, SIAM J. Discrete Math. Vol. 25 (2011), No. 3, pp. 1266-1268. See Equation (1.2).
-
V:=proc(m,n) local t1,i,j; t1:=0; for i from 1 to m do for j from 1 to n do if gcd(i,j)=1 then t1:=t1+(m+1-i)*(n+1-j); fi; od; od; t1; end; T:=(m,n)->(2*m*n+m+n+2*V(m,n));
-
V[m_, n_] := Sum[If[GCD[i, j] == 1, (m-i+1)*(n-j+1), 0], {i, 1, m}, {j, 1, n}]; T[m_, n_] := 2*m*n+m+n+2*V[m, n]; Table[T[m-n, n], {m, 0, 11}, {n, 0, m}] // Flatten (* Jean-François Alcover, Jan 08 2014 *)
A123968
a(n) = n^2 - 3, starting at n=1.
Original entry on oeis.org
-2, 1, 6, 13, 22, 33, 46, 61, 78, 97, 118, 141, 166, 193, 222, 253, 286, 321, 358, 397, 438, 481, 526, 573, 622, 673, 726, 781, 838, 897, 958, 1021, 1086, 1153, 1222, 1293, 1366, 1441, 1518, 1597, 1678, 1761, 1846, 1933, 2022, 2113, 2206, 2301, 2398, 2497
Offset: 1
The quadratic factors of the characteristic polynomials of M_n for n = 1..6 are
x^2 - 2*x - 2,
x^2 - 4*x + 1,
x^2 - 6*x + 6,
x^2 - 8*x + 13,
x^2 - 10*x + 22,
x^2 - 12*x + 33.
-
mat:=func< n | Matrix(IntegerRing(), 5, 5, [< i, j, i eq j select n else (i eq j+1 or i eq j-1) select -1 else 0 > : i, j in [1..5] ]) >; [ Coefficients(Factorization(CharacteristicPolynomial(mat(n)))[4][1])[1]:n in [1..50] ]; // Klaus Brockhaus, Nov 13 2010
-
with(combinat):seq(fibonacci(3, i)-4,i=1..55); # Zerinvary Lajos, Mar 20 2008
-
M[n_] := {{n, -1, 0, 0, 0}, {-1, n, -1, 0, 0}, {0, -1, n, -1, 0}, {0, 0, -1, n, -1}, {0, 0, 0, -1, n}}; p[n_, x_] = Factor[CharacteristicPolynomial[M[n], x]] Table[ -3 + n^2, {n, 1, 25}]
-
A123968(n) = n^2-3 /* or: */
-
a(n)=polcoeff(factor(charpoly(matrix(5,5,i,j,if(abs(i-j)>1,0,if(i==j,n,-1)))))[4,1], 0)
A190576
a(n) = n^2 + 5*n - 5.
Original entry on oeis.org
1, 9, 19, 31, 45, 61, 79, 99, 121, 145, 171, 199, 229, 261, 295, 331, 369, 409, 451, 495, 541, 589, 639, 691, 745, 801, 859, 919, 981, 1045, 1111, 1179, 1249, 1321, 1395, 1471, 1549, 1629, 1711, 1795, 1881, 1969, 2059, 2151, 2245, 2341
Offset: 1
-
[n^2+5*n-5: n in [1..50]]; // Vincenzo Librandi, Sep 30 2011
-
k = 5; Table[n^2 + k*n - k, {n, 100}]
LinearRecurrence[{3,-3,1},{1,9,19},50] (* Harvey P. Dale, May 28 2015 *)
-
a(n)=n^2+5*n-5 \\ Charles R Greathouse IV, Jun 17 2017
A213921
Natural numbers placed in table T(n,k) layer by layer. The order of placement: at the beginning filled odd places of layer clockwise, next - even places clockwise. Table T(n,k) read by antidiagonals.
Original entry on oeis.org
1, 2, 3, 5, 4, 7, 10, 8, 9, 13, 17, 14, 6, 16, 21, 26, 22, 11, 12, 25, 31, 37, 32, 18, 15, 20, 36, 43, 50, 44, 27, 23, 24, 30, 49, 57, 65, 58, 38, 33, 19, 35, 42, 64, 73, 82, 74, 51, 45, 28, 29, 48, 56, 81, 91, 101, 92, 66, 59, 39, 34, 41, 63, 72, 100, 111
Offset: 1
The start of the sequence as table:
1 2 5 10 17 26 ...
3 4 8 14 22 32 ...
7 9 6 11 18 27 ...
13 16 12 15 23 33 ...
21 25 20 24 19 28 ...
31 36 30 35 29 34 ...
...
The start of the sequence as triangle array read by rows:
1;
2, 3;
5, 4, 7;
10, 8, 9, 13;
17, 14, 6, 16, 21;
26, 22, 11, 12, 25, 31;
...
Cf.
A060734,
A060736; table T(n,k) contains: in rows
A002522,
A014206,
A059100,
A027688,
A117950,
A027689,
A087475,
A027690,
A117951,
A027691,
A114949,
A027692,
A117619; in columns
A002061,
A000290,
A002378,
A005563,
A028387,
A008865,
A028552,
A028872,
A014209,
A028347,
A028875.
A213922
Natural numbers placed in table T(n,k) layer by layer. The order of placement: T(n,n), T(n-1,n), T(n,n-1), ... T(1,n), T(n,1). Table T(n,k) read by antidiagonals.
Original entry on oeis.org
1, 3, 4, 8, 2, 9, 15, 6, 7, 16, 24, 13, 5, 14, 25, 35, 22, 11, 12, 23, 36, 48, 33, 20, 10, 21, 34, 49, 63, 46, 31, 18, 19, 32, 47, 64, 80, 61, 44, 29, 17, 30, 45, 62, 81, 99, 78, 59, 42, 27, 28, 43, 60, 79, 100, 120, 97, 76, 57, 40, 26, 41, 58, 77, 98, 121
Offset: 1
The start of the sequence as a table:
1, 3, 8, 15, 24, 35, ...
4, 2, 6, 13, 22, 33, ...
9, 7, 5, 11, 20, 31, ...
16, 14, 12, 10, 18, 29, ...
25, 23, 21, 19, 17, 27, ...
36, 34, 32, 30, 28, 26, ...
...
The start of the sequence as triangular array read by rows:
1;
3, 4;
8, 2, 9;
15, 6, 7, 16;
24, 13, 5, 14, 25;
35, 22, 11, 12, 23, 36;
...
Cf.
A060734,
A060736; table T(n,k) contains: in rows
A005563,
A028872,
A028875,
A028881,
A028560,
A116711; in columns
A000290,
A008865,
A028347,
A028878,
A028884.
-
f[n_, k_] := n^2 - 2*k + 2 /; n >= k; f[n_, k_] := k^2 - 2*n + 1 /; n < k; TableForm[Table[f[n, k], {n, 1, 5}, {k, 1, 10}]]; Table[f[n - k + 1, k], {n, 5}, {k, n, 1, -1}] // Flatten (* G. C. Greubel, Aug 19 2017 *)
-
t=int((math.sqrt(8*n-7) - 1)/ 2)
i=n-t*(t+1)/2
j=(t*t+3*t+4)/2-n
if i >= j:
result=i*i-2*j+2
else:
result=j*j-2*i+1
A267874
Total number of ON (black) cells after n iterations of the "Rule 235" elementary cellular automaton starting with a single ON (black) cell.
Original entry on oeis.org
1, 2, 6, 13, 22, 33, 46, 61, 78, 97, 118, 141, 166, 193, 222, 253, 286, 321, 358, 397, 438, 481, 526, 573, 622, 673, 726, 781, 838, 897, 958, 1021, 1086, 1153, 1222, 1293, 1366, 1441, 1518, 1597, 1678, 1761, 1846, 1933, 2022, 2113, 2206, 2301, 2398, 2497
Offset: 0
-
rule=235; rows=20; ca=CellularAutomaton[rule,{{1},0},rows-1,{All,All}]; (* Start with single black cell *) catri=Table[Take[ca[[k]],{rows-k+1,rows+k-1}],{k,1,rows}]; (* Truncated list of each row *) nbc=Table[Total[catri[[k]]],{k,1,rows}]; (* Number of Black cells in stage n *) Table[Total[Take[nbc,k]],{k,1,rows}] (* Number of Black cells through stage n *)
A349947
Triangular array: row n gives the positions of n+1 in A349946.
Original entry on oeis.org
1, 2, 4, 3, 5, 9, 6, 7, 10, 16, 8, 11, 12, 17, 25, 13, 14, 18, 19, 26, 36, 15, 20, 21, 27, 28, 37, 49, 22, 23, 29, 30, 38, 39, 50, 64, 24, 31, 32, 40, 41, 51, 52, 65, 81, 33, 34, 42, 43, 53, 54, 66, 67, 82, 100, 35, 44, 45, 55, 56, 68, 69, 83, 84, 101, 121
Offset: 1
First 7 rows:
1
2 4
3 5 9
6 7 10 16
8 11 12 17 25
13 14 18 19 26 36
14 20 21 27 28 37 49
-
t = {1, 1}; Do[t = Join[t, Riffle[Range[n], n], {n}], {n, 2, 100}];
u = Flatten[Partition[t, 2]];
v = Table[n (n + 1), {n, 1, 80}];
d = Delete[u, Map[{#} &, v]]; (* A349526 *)
p = Table[{d[[n]], d[[n + 1]]}, {n, 1, 150}];
q = Map[Total, p] (* A349946 *)
r = Table[Flatten[Position[q, n]], {n, 2, 12}] (* A349947 array *)
Flatten[r] (* A349947 sequence *)
Comments