A208118
T(n,k)=Number of nXk 0..1 arrays avoiding 0 0 0 and 0 1 0 horizontally and 0 0 1 and 0 1 1 vertically.
Original entry on oeis.org
2, 4, 4, 6, 16, 6, 9, 36, 36, 9, 15, 81, 90, 81, 12, 25, 225, 225, 225, 144, 16, 40, 625, 825, 625, 420, 256, 20, 64, 1600, 3025, 3025, 1225, 784, 400, 25, 104, 4096, 9240, 14641, 7315, 2401, 1260, 625, 30, 169, 10816, 28224, 53361, 43681, 17689, 3969, 2025, 900
Offset: 1
Some solutions for n=4 k=3
..1..1..1....0..1..1....0..0..1....0..0..1....1..1..0....1..0..1....1..1..1
..1..1..1....1..0..1....1..0..1....0..0..1....0..0..1....1..0..1....1..1..1
..0..1..1....0..1..1....0..0..1....0..0..1....1..1..0....1..0..1....1..1..1
..0..1..1....1..0..1....0..0..1....0..0..1....0..0..1....0..0..1....1..0..1
A208142
T(n,k)=Number of nXk 0..1 arrays avoiding 0 0 1 and 0 1 1 horizontally and 0 0 1 and 1 0 1 vertically.
Original entry on oeis.org
2, 4, 4, 6, 16, 6, 9, 36, 36, 8, 12, 81, 108, 64, 10, 16, 144, 324, 240, 100, 12, 20, 256, 720, 900, 450, 144, 14, 25, 400, 1600, 2400, 2025, 756, 196, 16, 30, 625, 3000, 6400, 6300, 3969, 1176, 256, 18, 36, 900, 5625, 14000, 19600, 14112, 7056, 1728, 324, 20, 42, 1296
Offset: 1
Some solutions for n=4 k=3
..1..0..0....0..0..0....0..1..0....1..1..1....0..1..0....0..1..0....0..1..0
..0..0..0....1..0..0....1..1..0....1..1..0....1..0..0....0..1..0....1..0..1
..0..0..0....0..0..0....1..1..0....1..0..0....1..0..0....0..1..0....0..0..0
..0..0..0....0..0..0....1..0..0....1..0..0....1..0..0....0..1..0....0..0..0
A208555
T(n,k)=Number of nXk 0..1 arrays avoiding 0 0 0 and 0 0 1 horizontally and 0 0 1 and 0 1 1 vertically.
Original entry on oeis.org
2, 4, 4, 6, 16, 6, 10, 36, 36, 9, 16, 100, 90, 81, 12, 26, 256, 330, 225, 144, 16, 42, 676, 1008, 1089, 420, 256, 20, 68, 1764, 3354, 3969, 2508, 784, 400, 25, 110, 4624, 10710, 16641, 10080, 5776, 1260, 625, 30, 178, 12100, 34884, 65025, 50052, 25600, 11020
Offset: 1
Some solutions for n=4 k=3
..1..1..0....1..1..0....1..1..0....1..1..1....1..0..1....1..0..1....0..1..1
..1..0..0....0..1..0....0..1..0....1..1..0....0..1..0....1..0..1....0..1..1
..1..0..0....1..0..0....0..1..0....1..0..1....1..0..0....1..0..0....0..1..0
..1..0..0....0..1..0....0..1..0....1..1..0....0..1..0....1..0..0....0..1..0
A207949
T(n,k)=Number of nXk 0..1 arrays avoiding 0 0 1 and 0 1 1 horizontally and 0 1 0 and 1 0 1 vertically.
Original entry on oeis.org
2, 4, 4, 6, 16, 6, 9, 36, 36, 10, 12, 81, 102, 100, 16, 16, 144, 289, 370, 256, 26, 20, 256, 612, 1369, 1232, 676, 42, 25, 400, 1296, 3478, 5929, 4238, 1764, 68, 30, 625, 2340, 8836, 18172, 26569, 14406, 4624, 110, 36, 900, 4225, 18330, 55696, 98126, 117649
Offset: 1
Some solutions for n=4 k=3
..1..1..0....1..1..0....0..0..0....1..0..0....0..1..0....0..1..0....0..1..0
..0..0..0....1..0..1....1..0..0....0..0..0....1..0..0....1..0..1....0..1..0
..0..0..0....1..0..1....1..1..1....0..0..0....1..0..1....1..0..1....0..1..0
..1..0..0....0..1..0....1..1..1....0..1..0....1..1..1....1..1..0....0..1..0
A014540
Rectilinear crossing number of complete graph on n nodes.
Original entry on oeis.org
0, 0, 0, 0, 1, 3, 9, 19, 36, 62, 102, 153, 229, 324, 447, 603, 798, 1029, 1318, 1657, 2055, 2528, 3077, 3699, 4430, 5250, 6180
Offset: 1
- Steven R. Finch, Mathematical Constants, Encyclopedia of Mathematics and its Applications, vol. 94, Cambridge University Press, 2003, Section 8.18, p. 532.
- M. Gardner, Crossing Numbers. Ch. 11 in Knotted Doughnuts and Other Mathematical Entertainments. New York: W. H. Freeman, 1986.
- C. Thomassen, Embeddings and minors, pp. 301-349 of R. L. Graham et al., eds., Handbook of Combinatorics, MIT Press.
- B. M. Abrego, S. Fernandez-Merchant, J. LeaƱos, and G. Salazar, The maximum number of halving lines and the rectilinear crossing number of K_n for n <= 27, Electronic Notes in Discrete Mathematics, 30 (2008), 261-266.
- O. Aichholzer, Crossing number project.
- O. Aichholzer, F. Aurenhammer, and H. Krasser, Progress on rectilinear crossing numbers. [Broken link]
- O. Aichholzer, F. Aurenhammer, and H. Krasser, Progress on rectilinear crossing numbers, Technical report, IGI-TU Graz, Austria, 2001.
- O. Aichholzer, F. Aurenhammer, and H. Krasser, On the Rectilinear Crossing Number. [Broken link]
- O. Aichholzer, J. Garcia, D. Orden, and P. Ramos, New lower bounds for the number of <= k-edges and the rectilinear crossing number of K_n, Discrete & Computational Geometry 38 (2007), 1-14.
- O. Aichholzer and H. Krasser, The point set order type data base: a collection of applications and results, pp. 17-20 in Abstracts 13th Canadian Conference on Computational Geometry (CCCG '01), Waterloo, Aug. 13-15, 2001. [Broken link]
- D. Archdeacon, The rectilinear crossing number.
- D. Bienstock and N. Dean, Bounds for rectilinear crossing numbers, J. Graph Theory 17 (1993) 333-348
- A. Brodsky, S. Durocher, and E. Gethner, The Rectilinear Crossing Number of K_{10} is 62, The Electronic J. Combin, #R23, 2001.
- A. Brodsky, S. Durocher, and E. Gethner, Toward the rectilinear crossing number of K_n: new drawings, upper bounds, and asymptotics, Discrete Math. 262 (2003), 59-77.
- D. Garber, The Orchard crossing number of an abstract graph, arXiv:math/0303317 [math.CO], 2003-2009.
- H. F. Jensen, An Upper Bound for the Rectilinear Crossing Number of the Complete Graph, J. Comb. Th. Ser. B 10, 212-216, 1971.
- Eric Weisstein's World of Mathematics, Graph Crossing Number.
- Eric Weisstein's World of Mathematics, Rectilinear Crossing Number.
- Eric Weisstein's World of Mathematics, Zarankiewicz's Conjecture.
102 from Oswin Aichholzer (oswin.aichholzer(AT)tugraz.at), Aug 14 2001
153 from Hannes Krasser (hkrasser(AT)igi.tu-graz.ac.at), Sep 17 2001
More terms from Bernardo M. Abrego (bernardo.abrego(AT)csun.edu), May 05 2008
A250432
T(n,k)=Number of (n+1)X(k+1) 0..1 arrays with nondecreasing sum of every two consecutive values in every row and column.
Original entry on oeis.org
16, 36, 36, 81, 108, 81, 144, 324, 324, 144, 256, 720, 1296, 720, 256, 400, 1600, 3600, 3600, 1600, 400, 625, 3000, 10000, 12000, 10000, 3000, 625, 900, 5625, 22500, 40000, 40000, 22500, 5625, 900, 1296, 9450, 50625, 105000, 160000, 105000, 50625, 9450
Offset: 1
Some solutions for n=5 k=4
..0..0..0..0..1....0..0..0..0..0....0..0..1..0..1....0..0..0..1..1
..0..1..0..1..1....0..0..0..1..0....1..1..1..1..1....0..0..1..1..1
..0..0..1..0..1....0..0..0..1..0....0..0..1..1..1....0..0..1..1..1
..0..1..1..1..1....0..0..0..1..0....1..1..1..1..1....0..0..1..1..1
..0..1..1..1..1....0..0..0..1..0....0..1..1..1..1....1..0..1..1..1
..0..1..1..1..1....0..0..0..1..1....1..1..1..1..1....1..1..1..1..1
A267719
T(n,k)=Number of nXk 0..1 arrays with every repeated value in every row and column greater than the previous repeated value.
Original entry on oeis.org
2, 4, 4, 6, 16, 6, 9, 36, 36, 9, 12, 81, 102, 81, 12, 16, 144, 270, 270, 144, 16, 20, 256, 546, 872, 546, 256, 20, 25, 400, 1080, 1915, 1915, 1080, 400, 25, 30, 625, 1866, 4266, 4444, 4266, 1866, 625, 30, 36, 900, 3186, 7879, 10489, 10489, 7879, 3186, 900, 36, 42, 1296
Offset: 1
Some solutions for n=5 k=4
..1..0..0..1....0..1..1..0....1..1..0..1....0..1..1..0....1..0..0..1
..1..0..1..1....1..0..0..1....0..1..1..0....1..0..0..1....1..0..1..1
..0..1..0..0....0..1..1..0....1..0..1..1....0..0..1..0....0..1..0..0
..1..1..0..1....1..0..1..1....0..1..0..0....0..1..0..0....1..0..1..1
..0..0..1..0....1..1..0..1....1..0..1..0....1..1..0..1....0..1..0..0
A212892
a(n) = n^4/8 if n is even, a(n) = (n^2-1)^2/8 if n is odd.
Original entry on oeis.org
0, 0, 2, 8, 32, 72, 162, 288, 512, 800, 1250, 1800, 2592, 3528, 4802, 6272, 8192, 10368, 13122, 16200, 20000, 24200, 29282, 34848, 41472, 48672, 57122, 66248, 76832, 88200, 101250, 115200, 131072, 147968, 167042, 187272, 209952, 233928, 260642, 288800, 320000, 352800, 388962, 426888
Offset: 0
- N. J. A. Sloane, Table of n, a(n) for n = 0..10000
- K. Drakakis, A review of Costas arrays, Journal of Applied Mathematics, pp. 1-32, 2006, Article ID 26385.
- Index entries for linear recurrences with constant coefficients, signature (2,2,-6,0,6,-2,-2,1).
-
f:=n->if n mod 2 = 0 then n^4/8 else (n^2-1)^2/8; fi; [seq(f(n),n=0..50)]; # N. J. A. Sloane, Mar 06 2015
-
(* If the sequence begins a(0)=0, a(1)=2, a(2)=8, a(3)=32, ... *)
t = Compile[{{n, _Integer}}, Module[{s = 0}, (Do[If[Mod[w - x, 2] == Mod[x - y, 2] == Mod[y - z, 2] == 1, s = s + 1], {w, 0, n}, {x, 0, n}, {y, 0, n}, {z, 0, n}]; s)]];
m = Map[t[#] &, Range[0, 40]] (* A212892 *)
m/2 (* integers *)
Formed by merging two entries that arose in different contexts. Thanks to
Alois P. Heinz, Mar 04 2015 for noticing that the sequences were essentially identical. -
N. J. A. Sloane, Mar 06 2015
A298368
Triangle read by rows: T(n, k) = floor((n-1)/2)*floor(n/2)*floor((k-1)/2)*floor(k/2).
Original entry on oeis.org
0, 0, 0, 0, 0, 1, 0, 0, 2, 4, 0, 0, 4, 8, 16, 0, 0, 6, 12, 24, 36, 0, 0, 9, 18, 36, 54, 81, 0, 0, 12, 24, 48, 72, 108, 144, 0, 0, 16, 32, 64, 96, 144, 192, 256, 0, 0, 20, 40, 80, 120, 180, 240, 320, 400, 0, 0, 25, 50, 100, 150, 225, 300, 400, 500, 625
Offset: 1
First rows are given by:
0;
0, 0;
0, 0, 1;
0, 0, 2, 4;
0, 0, 4, 8, 16;
0, 0, 6, 12, 24, 36;
0, 0, 9, 18, 36, 54, 81;
0, 0, 12, 24, 48, 72, 108, 144;
0, 0, 16, 32, 64, 96, 144, 192, 256;
0, 0, 20, 40, 80, 120, 180, 240, 320, 400;
-
seq(seq(floor((k-1)/2)*floor(k/2)*floor((n-1)/2)*floor(n/2),k=1..n),n=1..12); # Robert Israel, Jan 17 2018
-
Table[Floor[(m - 1)/2] Floor[m/2] Floor[(n - 1)/2] Floor[n/2], {n, 11}, {m, n}] // Flatten
Table[Times @@ Floor[{m, m - 1, n, n - 1}/2], {n, 11}, {m, n}] // Flatten
Comments