cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 40 results. Next

A211337 Numbers k for which the number of divisors, tau(k), is congruent to 1 modulo 3.

Original entry on oeis.org

1, 6, 8, 10, 14, 15, 21, 22, 26, 27, 33, 34, 35, 38, 39, 46, 48, 51, 55, 57, 58, 62, 64, 65, 69, 74, 77, 80, 82, 85, 86, 87, 91, 93, 94, 95, 106, 111, 112, 115, 118, 119, 120, 122, 123, 125, 129, 133, 134, 141, 142, 143, 145, 146, 155, 158, 159, 161, 162
Offset: 1

Views

Author

Douglas Latimer, Apr 07 2012

Keywords

Comments

Any term a(n) can be expressed as 1 term from A211484 times 1 nonzero term from A000578. - Douglas Latimer, Apr 20 2012
The numbers of terms not exceeding 10^k, for k = 1, 2, ..., are 4, 36, 366, 3635, 36499, 365456, 3654240, 36538501, 365382167, 3653804173, ... . Conjecture: the asymptotic density of this sequence exists and equals 3*zeta(3)/Pi^2 = 0.3653814847007... (A346602), so, a(n) ~ k*n with k = Pi^2/(3*zeta(3)) = 2.73686555524... . This conjecture is true if this sequence and A211338 have the same density (see A059269). - Amiram Eldar, Jan 06 2024

Examples

			The divisors of 10  are: 1, 2, 5, 10 (4 divisors). 4 is congruent to 1 modulo 3. Thus 10 is a member of this sequence.
		

Crossrefs

This is an extension of A030513 (numbers with 4 divisors).
The union of A059269 and A211338 is the complementary sequence to this one.
The definition of this sequence uses A000005 (the number of divisors of n).

Programs

  • Mathematica
    Select[Range[162], Mod[DivisorSigma[0, #], 3] == 1 &] (* T. D. Noe, Apr 21 2012 *)
  • PARI
    {plnt=1 ; mxind=100 ;for(k=1, 10^6,
    if(numdiv(k) % 3 == 1, print(k); plnt++; if(mxind+1 ==  plnt, break() )))}

Formula

Conjecture: a(n) ~ k*n where k = 2/prod(1 - (p-1)/(p^(3*k))) = 2.7290077... where p ranges over the primes and k ranges over the positive integers. - Charles R Greathouse IV, Apr 13 2012

A007964 Numbers k such that product of proper divisors of k is <= k; i.e., product of divisors of k is <= k^2.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 14, 15, 17, 19, 21, 22, 23, 25, 26, 27, 29, 31, 33, 34, 35, 37, 38, 39, 41, 43, 46, 47, 49, 51, 53, 55, 57, 58, 59, 61, 62, 65, 67, 69, 71, 73, 74, 77, 79, 82, 83, 85, 86, 87, 89, 91, 93, 94, 95, 97, 101, 103, 106
Offset: 1

Views

Author

R. Muller

Keywords

Comments

Numbers which are the product of up to two primes (not necessarily distinct) or the cube of a prime. Alternatively, numbers having prime decomposition p*q, where q either is distinct from p or equals p^k for 0 <= k <= 2.
Corresponds to numbers having at most four divisors. (For numbers with exactly four divisors see A030513.) - Lekraj Beedassy, Sep 23 2003
For n > 3: numbers that can occur as fourth divisors; union of A000040, A001248, A006881 and A030078. - Reinhard Zumkeller, May 15 2006

References

  • Liu Hongyan and Zhang Wenpeng, On the simple numbers and the mean value properties, Smarandache Notions (Book Series, Vol. 14), American Research Press, 2004; pp. 171-175.

Crossrefs

Programs

Extensions

Description corrected by Henry Bottomley, Nov 24 2000

A039832 Numbers k such that k and k+1 both have 4 divisors.

Original entry on oeis.org

14, 21, 26, 33, 34, 38, 57, 85, 86, 93, 94, 118, 122, 133, 141, 142, 145, 158, 177, 201, 202, 205, 213, 214, 217, 218, 253, 298, 301, 302, 326, 334, 381, 393, 394, 445, 446, 453, 481, 501, 514, 526, 537, 542, 553, 565, 622, 633, 634, 694, 697, 698, 706, 717, 745, 766, 778, 793, 802, 817
Offset: 1

Views

Author

Keywords

Examples

			14 and 15 both have 4 as number of divisors and are consecutive.
		

References

  • David Wells, Curious and interesting numbers, Penguin Books, 1986, p. 91.

Crossrefs

Intersection of A005237 and A030513.

Programs

A073915 Triangle read by rows in which the n-th row contains the first n numbers with n divisors.

Original entry on oeis.org

1, 2, 3, 4, 9, 25, 6, 8, 10, 14, 16, 81, 625, 2401, 14641, 12, 18, 20, 28, 32, 44, 64, 729, 15625, 117649, 1771561, 4826809, 24137569, 24, 30, 40, 42, 54, 56, 66, 70, 36, 100, 196, 225, 256, 441, 484, 676, 1089, 48, 80, 112, 162, 176, 208, 272, 304, 368, 405
Offset: 1

Views

Author

Amarnath Murthy, Aug 18 2002

Keywords

Comments

The first row contains the 1. The 2nd row contains the beginning of A000040. The 3rd contains the beginning of A001248, the 4th through 7th A030513 to A030516. The 8th through 20th rows come from A030626 to A030638. - R. J. Mathar, Mar 23 2007

Examples

			1;
2,3;
4,9,25;
6,8,10,14;
16,81,625,2401,14641;
...
		

Crossrefs

Cf. A073916.

Programs

  • Mathematica
    d = Table[Length[Divisors[n]], {n, 2000}]; t = {}; n = 0; ok = True; While[ok, n++; If[PrimeQ[n], AppendTo[t, Prime[Range[n]]^(n - 1)], c = Flatten[Position[d, n, 1, n]]; If[Length[c] >= n, AppendTo[t, c], ok = False]]]; Flatten[t] (* T. D. Noe, Jun 23 2013 *)

Extensions

Corrected and extended by Sascha Kurz, Jan 28 2003

A080256 Sum of numbers of distinct and of all prime factors of n.

Original entry on oeis.org

0, 2, 2, 3, 2, 4, 2, 4, 3, 4, 2, 5, 2, 4, 4, 5, 2, 5, 2, 5, 4, 4, 2, 6, 3, 4, 4, 5, 2, 6, 2, 6, 4, 4, 4, 6, 2, 4, 4, 6, 2, 6, 2, 5, 5, 4, 2, 7, 3, 5, 4, 5, 2, 6, 4, 6, 4, 4, 2, 7, 2, 4, 5, 7, 4, 6, 2, 5, 4, 6, 2, 7, 2, 4, 5, 5, 4, 6, 2, 7, 5, 4, 2, 7, 4, 4, 4, 6, 2, 7, 4, 5, 4, 4, 4, 8, 2, 5, 5, 6, 2, 6, 2, 6, 6
Offset: 1

Views

Author

Reinhard Zumkeller, Feb 10 2003

Keywords

Comments

a(n) = 2 iff n is prime, A000040; a(n) > 2 iff n is composite, A002808; a(n) <= 3 iff n is prime or square of prime, A000430; a(n) = 3 iff n is square of prime, A001248; a(A080257(n)) > 3;
a(n) <= 4 iff product of proper divisors <= n^2, A007964; a(n) = 4 iff n has four divisors, A030513; a(n) > 4 iff product of proper divisors > n^2, A058080; a(A064598(n)) <= 5; a(A080258(n)) = 5.

Crossrefs

Programs

  • Mathematica
    f[n_] := Plus @@ (Last /@ FactorInteger[n] + 1); Table[ f[n], {n, 105}] (* Robert G. Wilson v, Aug 03 2005 *)
  • PARI
    a(n) = {my(f = factor(n)); omega(f) + bigomega(f);} \\ Amiram Eldar, Sep 28 2023

Formula

a(n) = Omega(n) + omega(n) = A001221(n) + A001222(n).
Additive with a(p^e) = e + 1.
Sum_{k=1..n} a(k) = 2 * n * log(log(n)) + c * n + O(n/log(n)), where c = A077761 + A083342 = 1.29615109474508069537... . - Amiram Eldar, Sep 28 2023

A137493 Numbers with 30 divisors.

Original entry on oeis.org

720, 1008, 1200, 1584, 1620, 1872, 2268, 2352, 2448, 2592, 2736, 2800, 3312, 3564, 3888, 3920, 4050, 4176, 4212, 4400, 4464, 4608, 5200, 5328, 5508, 5808, 5904, 6156, 6192, 6768, 6800, 7452, 7500, 7600, 7632, 7938, 8112, 8496, 8624, 8784, 9200, 9396
Offset: 1

Views

Author

R. J. Mathar, Apr 22 2008

Keywords

Comments

Maple implementation: see A030513.
Numbers of the form p^29 (subset of A122970), p*q^2*r^4 (A179669), p^4*q^5 (A179702), p^2*q^9 (like 4608) or p*q^14, where p, q and r are distinct primes. - R. J. Mathar, Mar 01 2010

Crossrefs

Cf. A137492 (29 divs), A139571 (31 divs).

Programs

  • Mathematica
    Select[Range[10000],DivisorSigma[0,#]==30&]  (* Harvey P. Dale, Feb 18 2011 *)
  • PARI
    is(n)=numdiv(n)==30 \\ Charles R Greathouse IV, Jun 19 2016
    
  • PARI
    list(lim)=
    {
      my(f=(v,s)->concat(v,listsig(lim,s,1)));
      Set(fold(f, [[], [29], [5, 4], [9, 2], [14, 1], [4, 2, 1]]));
    }
    listsig(lim, sig, coprime)=
    {
      my(e=sig[1]);
      if(#sig<2,
        if(#sig==0 || sig[1]==0, return(if(lim<1,[],[1])));
        my(P=primes([2,sqrtnint(lim\1,e)]));
        if(coprime==1, return(if(e>1,apply(p->p^e,P),P)));
        P=select(p->gcd(p,coprime)==1, P);
        if(e>1, P=apply(p->p^e, P));
        return(P);
      );
      my(v=List(),ss=sig[2..#sig],t=leastOfSig(ss));
      forprime(p=2,sqrtnint(lim\t,e),
        if(coprime%p,
            my(u=listsig(lim\p^e,ss,coprime*p));
            for(i=1,#u, listput(v,p^e*u[i]));
        )
      );
      Vec(v);
    } \\ Charles R Greathouse IV, Nov 18 2021

Formula

A000005(a(n))=30.

A036455 Numbers n such that d(d(n)) is an odd prime, where d(k) is the number of divisors of k.

Original entry on oeis.org

6, 8, 10, 14, 15, 21, 22, 26, 27, 33, 34, 35, 36, 38, 39, 46, 51, 55, 57, 58, 62, 65, 69, 74, 77, 82, 85, 86, 87, 91, 93, 94, 95, 100, 106, 111, 115, 118, 119, 120, 122, 123, 125, 129, 133, 134, 141, 142, 143, 145, 146, 155, 158, 159, 161, 166, 168, 177, 178, 183
Offset: 1

Views

Author

Keywords

Comments

Compare with sequence A007422 and A030513 -- the resemblance is rather strong. Still this sequence is different. For example, 36, 100, 120, and 168 are here.

Examples

			a(15) = 39 and d(39) = 4, d(d(39)) = d(4) = 3 and d(d(d(39))) = 2. After 3 iteration the equilibrium is reached.
		

Crossrefs

Programs

  • Maple
    filter:= proc(n) local r;
      r:= numtheory:-tau(numtheory:-tau(n));
      r::odd and isprime(r)
    end proc:
    select(filter, [$1..1000]); # Robert Israel, Feb 02 2016
  • Mathematica
    fQ[n_] := Module[{d2 = DivisorSigma[0, DivisorSigma[0, n]]}, d2 > 2 && PrimeQ[d2]]; Select[Range[200], fQ] (* T. D. Noe, Jan 22 2013 *)
  • PARI
    is(n)=isprime(n=numdiv(numdiv(n))) && n>2 \\ Charles R Greathouse IV, Jan 22 2013

Formula

d(d(d(a(n)))) = 2 for all n.
A036459(a(n)) = 3. - Ivan Neretin, Jan 25 2016

Extensions

Definition clarified by R. J. Mathar and Charles R Greathouse IV, Jan 22 2013

A137484 Numbers with 21 divisors.

Original entry on oeis.org

576, 1600, 2916, 3136, 7744, 10816, 18225, 18496, 23104, 33856, 35721, 53824, 61504, 62500, 87616, 88209, 107584, 118336, 123201, 140625, 141376, 179776, 210681, 222784, 238144, 263169, 287296, 322624, 341056, 385641, 399424, 440896
Offset: 1

Views

Author

R. J. Mathar, Apr 22 2008

Keywords

Comments

Maple implementation: see A030513.
Numbers of the form p^20 or p^2*q^6 (A189990) where p and q are distinct primes. - R. J. Mathar, Mar 01 2010

Crossrefs

Cf. A000005, A030513, A030638 (20 divisors), A137485 (22 divisors), A189990.

Programs

  • Mathematica
    Select[Range[450000],DivisorSigma[0,#]==21&] (* Vladimir Joseph Stephan Orlovsky, May 03 2011 *)
  • PARI
    is(n)=numdiv(n)==21 \\ Charles R Greathouse IV, Jun 19 2016
    
  • Python
    from math import isqrt
    from sympy import primepi, primerange, integer_nthroot
    def A137484(n):
        def bisection(f,kmin=0,kmax=1):
            while f(kmax) > kmax: kmax <<= 1
            kmin = kmax >> 1
            while kmax-kmin > 1:
                kmid = kmax+kmin>>1
                if f(kmid) <= kmid:
                    kmax = kmid
                else:
                    kmin = kmid
            return kmax
        def f(x): return n+x-sum(primepi(isqrt(x//p**6)) for p in primerange(integer_nthroot(x,6)[0]+1))+primepi(integer_nthroot(x,8)[0])-primepi(integer_nthroot(x,20)[0])
        return bisection(f,n,n) # Chai Wah Wu, Feb 21 2025

Formula

A000005(a(n)) = 21.
Sum_{n>=1} 1/a(n) = P(2)*P(6) - P(8) + P(20) = 0.00365945..., where P is the prime zeta function. - Amiram Eldar, Jul 03 2022

A137488 Numbers with 25 divisors.

Original entry on oeis.org

1296, 10000, 38416, 50625, 194481, 234256, 456976, 1185921, 1336336, 1500625, 2085136, 2313441, 4477456, 6765201, 9150625, 10556001, 11316496, 14776336, 16777216, 17850625, 22667121, 29986576, 35153041, 45212176, 52200625
Offset: 1

Views

Author

R. J. Mathar, Apr 22 2008

Keywords

Comments

Maple implementation: see A030513.
Numbers of the form p^24 (24th powers of A000040, subset of A010812) or p^4*q^4 (A189991), where p and q are distinct primes. - R. J. Mathar, Mar 01 2010

Crossrefs

Programs

  • Haskell
    a137488 n = a137488_list !! (n-1)
    a137488_list = m (map (^ 24) a000040_list) (map (^ 4) a006881_list) where
       m xs'@(x:xs) ys'@(y:ys) | x < y = x : m xs ys'
                               | otherwise = y : m xs' ys
    -- Reinhard Zumkeller, Nov 29 2011
    
  • Mathematica
    lst = {}; Do[If[DivisorSigma[0, n] == 25, Print[n]; AppendTo[lst, n]], {n, 55000000}]; lst (* Vladimir Joseph Stephan Orlovsky, May 03 2011 *)
    Select[Range[5221*10^4],DivisorSigma[0,#]==25&] (* Harvey P. Dale, Mar 11 2019 *)
  • PARI
    is(n)=numdiv(n)==25 \\ Charles R Greathouse IV, Jun 19 2016
    
  • Python
    from math import isqrt
    from sympy import primepi, integer_nthroot, primerange
    def A137488(n):
        def bisection(f,kmin=0,kmax=1):
            while f(kmax) > kmax: kmax <<= 1
            kmin = kmax >> 1
            while kmax-kmin > 1:
                kmid = kmax+kmin>>1
                if f(kmid) <= kmid:
                    kmax = kmid
                else:
                    kmin = kmid
            return kmax
        def f(x): return int(n+x+(t:=primepi(s:=isqrt(y:=integer_nthroot(x,4)[0])))+(t*(t-1)>>1)-sum(primepi(y//k) for k in primerange(1, s+1)))-primepi(integer_nthroot(x,24)[0])
        return bisection(f,n,n) # Chai Wah Wu, Feb 22 2025

Formula

A000005(a(n)) = 25.
Sum_{n>=1} 1/a(n) = (P(4)^2 - P(8))/2 + P(24) = 0.000933328..., where P is the prime zeta function. - Amiram Eldar, Jul 03 2022

A137485 Numbers with 22 divisors.

Original entry on oeis.org

3072, 5120, 7168, 11264, 13312, 17408, 19456, 23552, 29696, 31744, 37888, 41984, 44032, 48128, 54272, 60416, 62464, 68608, 72704, 74752, 80896, 84992, 91136, 99328, 103424, 105472, 109568, 111616, 115712, 118098, 130048, 134144, 140288
Offset: 1

Views

Author

R. J. Mathar, Apr 22 2008

Keywords

Comments

Maple implementation: see A030513.
Numbers of the form p^21 or p*q^10, where p and q are distinct primes. - R. J. Mathar, Mar 01 2010

Crossrefs

Programs

  • Maple
    A137485=proc(q) local n;
    for n from 1 to q do if tau(n)=22 then print(n); fi; od; end:
    A137485(10^10);
  • Mathematica
    Select[Range[200000],DivisorSigma[0,#]==22&] (* Vladimir Joseph Stephan Orlovsky, May 05 2011 *)
  • PARI
    is(n)=numdiv(n)==22 \\ Charles R Greathouse IV, Jun 19 2016
    
  • Python
    from sympy import primepi, integer_nthroot, primerange
    def A137485(n):
        def bisection(f,kmin=0,kmax=1):
            while f(kmax) > kmax: kmax <<= 1
            kmin = kmax >> 1
            while kmax-kmin > 1:
                kmid = kmax+kmin>>1
                if f(kmid) <= kmid:
                    kmax = kmid
                else:
                    kmin = kmid
            return kmax
        def f(x): return n+x-sum(primepi(x//p**10) for p in primerange(integer_nthroot(x,10)[0]+1))+primepi(integer_nthroot(x,11)[0])-primepi(integer_nthroot(x,21)[0])
        return bisection(f,n,n) # Chai Wah Wu, Feb 21 2025

Formula

A000005(a(n))=22.
Previous Showing 11-20 of 40 results. Next