cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A087902 Least m such that A080256(m)=n and has a maximum number A000792(n) of divisors.

Original entry on oeis.org

2, 4, 6, 12, 36, 60, 180, 900, 1260, 6300, 44100, 69300, 485100, 5336100, 6306300, 69369300, 901800900, 1179278100, 15330615300, 260620460100, 291281690700, 4951788741900, 94083986096100, 113891141063700, 2163931680210300
Offset: 2

Views

Author

Lekraj Beedassy, Oct 14 2003

Keywords

Comments

Omega(m)=A004523(n+1).

Examples

			a(6): The numbers m with A080256(m) = 6 are 24, 30, 32, 36, 40..., with number of divisors 8, 8, 6, 9, 8.... None of these have more than A000792(6) = 9 divisors and 36 is the first that has 9, so a(6) = 36.
		

Programs

  • PARI
    a(n) = local(x); x = (n + 2)\3; prod(i = 1, x, prime(i)^2)/if (n%3 == 1, prime(x)*prime(x - 1), if (n%3, prime(x), 1)); \\ David Wasserman, Jun 17 2005

Extensions

More terms from David Wasserman, Jun 17 2005

A000792 a(n) = max{(n - i)*a(i) : i < n}; a(0) = 1.

Original entry on oeis.org

1, 1, 2, 3, 4, 6, 9, 12, 18, 27, 36, 54, 81, 108, 162, 243, 324, 486, 729, 972, 1458, 2187, 2916, 4374, 6561, 8748, 13122, 19683, 26244, 39366, 59049, 78732, 118098, 177147, 236196, 354294, 531441, 708588, 1062882, 1594323, 2125764, 3188646, 4782969, 6377292
Offset: 0

Views

Author

Keywords

Comments

Numbers of the form 3^k, 2*3^k, 4*3^k with a(0) = 1 prepended.
If a set of positive numbers has sum n, this is the largest value of their product.
In other words, maximum of products of partitions of n: maximal value of Product k_i for any way of writing n = Sum k_i. To find the answer, take as many of the k_i's as possible to be 3 and then use one or two 2's (see formula lines below).
a(n) is also the maximal size of an Abelian subgroup of the symmetric group S_n. For example, when n = 6, one of the Abelian subgroups with maximal size is the subgroup generated by (123) and (456), which has order 9. [Bercov and Moser] - Ahmed Fares (ahmedfares(AT)my-deja.com), Apr 19 2001
Also the maximum number of maximal cliques possible in a graph with n vertices (cf. Capobianco and Molluzzo). - Felix Goldberg (felixg(AT)tx.technion.ac.il), Jul 15 2001 [Corrected by Jim Nastos and Tanya Khovanova, Mar 11 2009]
Every triple of alternate terms {3*k, 3*k+2, 3*k+4} in the sequence forms a geometric progression with first term 3^k and common ratio 2. - Lekraj Beedassy, Mar 28 2002
For n > 4, a(n) is the least multiple m of 3 not divisible by 8 for which omega(m) <= 2 and sopfr(m) = n. - Lekraj Beedassy, Apr 24 2003
Maximal number of divisors that are possible among numbers m such that A080256(m) = n. - Lekraj Beedassy, Oct 13 2003
Or, numbers of the form 2^p*3^q with p <= 2, q >= 0 and 2p + 3q = n. Largest number obtained using only the operations +,* and () on the parts 1 and 2 of any partition of n into these two summands where the former exceeds the latter. - Lekraj Beedassy, Jan 07 2005
a(n) is the largest number of complexity n in the sense of A005520 (A005245). - David W. Wilson, Oct 03 2005
a(n) corresponds also to the ultimate occurrence of n in A001414 and thus stands for the highest number m such that sopfr(m) = n, for n >= 2. - Lekraj Beedassy, Apr 29 2002
a(n) for n >= 1 is a paradigm shift sequence with procedural length p = 0, in the sense of A193455. - Jonathan T. Rowell, Jul 26 2011
a(n) = largest term of n-th row in A212721. - Reinhard Zumkeller, Jun 14 2012
For n >= 2, a(n) is the largest number whose prime divisors (with multiplicity) add to n, whereas the smallest such number (resp. smallest composite number) is A056240(n) (resp. A288814(n)). - David James Sycamore, Nov 23 2017
For n >= 3, a(n+1) = a(n)*(1 + 1/s), where s is the smallest prime factor of a(n). - David James Sycamore, Apr 10 2018

Examples

			a{8} = 18 because we have 18 = (8-5)*a(5) = 3*6 and one can verify that this is the maximum.
a(5) = 6: the 7 partitions of 5 are (5), (4, 1), (3, 2), (3, 1, 1), (2, 2, 1), (2, 1, 1, 1), (1, 1, 1, 1, 1) and the corresponding products are 5, 4, 6, 3, 4, 2 and 1; 6 is the largest.
G.f. = 1 + x + 2*x^2 + 3*x^3 + 4*x^4 + 6*x^5 + 9*x^6 + 12*x^7 + 18*x^8 + ...
		

References

  • B. R. Barwell, Cutting String and Arranging Counters, J. Rec. Math., 4 (1971), 164-168.
  • B. R. Barwell, Journal of Recreational Mathematics, "Maximum Product": Solution to Prob. 2004;25(4) 1993, Baywood, NY.
  • M. Capobianco and J. C. Molluzzo, Examples and Counterexamples in Graph Theory, p. 207. North-Holland: 1978.
  • S. L. Greitzer, International Mathematical Olympiads 1959-1977, Prob. 1976/4 pp. 18;182-3 NML vol. 27 MAA 1978
  • J. L. Gross and J. Yellen, eds., Handbook of Graph Theory, CRC Press, 2004; p. 396.
  • P. R. Halmos, Problems for Mathematicians Young and Old, Math. Assoc. Amer., 1991, pp. 30-31 and 188.
  • L. C. Larson, Problem-Solving Through Problems. Problem 1.1.4 pp. 7. Springer-Verlag 1983.
  • D. J. Newman, A Problem Seminar. Problem 15 pp. 5;15. Springer-Verlag 1982.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

See A007600 for a left inverse.
Cf. array A064364, rightmost (nonvanishing) numbers in row n >= 2.
See A056240 and A288814 for the minimal numbers whose prime factors sums up to n.
A000792, A178715, A193286, A193455, A193456, and A193457 are closely related as paradigm shift sequences for (p = 0, ..., 5 respectively).
Cf. A202337 (subsequence).

Programs

  • Haskell
    a000792 n = a000792_list !! n
    a000792_list = 1 : f [1] where
       f xs = y : f (y:xs) where y = maximum $ zipWith (*) [1..] xs
    -- Reinhard Zumkeller, Dec 17 2011
    
  • Magma
    I:=[1,1,2,3,4]; [n le 5 select I[n] else 3*Self(n-3): n in [1..45]]; // Vincenzo Librandi, Apr 14 2015
  • Maple
    A000792 := proc(n)
        m := floor(n/3) ;
        if n mod 3 = 0 then
            3^m ;
        elif n mod 3 = 1 then
            4*3^(m-1) ;
        else
            2*3^m ;
        end if;
        floor(%) ;
    end proc: # R. J. Mathar, May 26 2013
  • Mathematica
    a[1] = 1; a[n_] := 4* 3^(1/3 *(n - 1) - 1) /; (Mod[n, 3] == 1 && n > 1); a[n_] := 2*3^(1/3*(n - 2)) /; Mod[n, 3] == 2; a[n_] := 3^(n/3) /; Mod[n, 3] == 0; Table[a[n], {n, 0, 40}]
    CoefficientList[Series[(1 + x + 2x^2 + x^4)/(1 - 3x^3), {x, 0, 50}], x] (* Harvey P. Dale, May 01 2011 *)
    f[n_] := Max[ Times @@@ IntegerPartitions[n, All, Prime@ Range@ PrimePi@ n]]; f[1] = 1; Array[f, 43, 0] (* Robert G. Wilson v, Jul 31 2012 *)
    a[ n_] := If[ n < 2, Boole[ n > -1], 2^Mod[-n, 3] 3^(Quotient[ n - 1, 3] + Mod[n - 1, 3] - 1)]; (* Michael Somos, Jan 23 2014 *)
    Join[{1, 1}, LinearRecurrence[{0, 0, 3}, {2, 3, 4}, 50]] (* Jean-François Alcover, Jan 08 2019 *)
    Join[{1,1},NestList[#+Divisors[#][[-2]]&,2,41]] (* James C. McMahon, Aug 09 2024 *)
  • PARI
    {a(n) = floor( 3^(n - 4 - (n - 4) \ 3 * 2) * 2^( -n%3))}; /* Michael Somos, Jul 23 2002 */
    
  • PARI
    lista(nn) = {print1("1, 1, "); print1(a=2, ", "); for (n=1, nn, a += a/divisors(a)[2]; print1(a, ", "););} \\ Michel Marcus, Apr 14 2015
    
  • PARI
    A000792(n)=if(n>1,3^((n-2)\3)*(2+(n-2)%3),1) \\ M. F. Hasler, Jan 19 2019
    

Formula

G.f.: (1 + x + 2*x^2 + x^4)/(1 - 3*x^3). - Simon Plouffe in his 1992 dissertation.
a(3n) = 3^n; a(3*n+1) = 4*3^(n-1) for n > 0; a(3*n+2) = 2*3^n.
a(n) = 3*a(n-3) if n > 4. - Henry Bottomley, Nov 29 2001
a(n) = n if n <= 2, otherwise a(n-1) + Max{gcd(a(i), a(j)) | 0 < i < j < n}. - Reinhard Zumkeller, Feb 08 2002
A007600(a(n)) = n; Andrew Chi-Chih Yao attributes this observation to D. E. Muller. - Vincent Vatter, Apr 24 2006
a(n) = 3^(n - 2 - 2*floor((n - 1)/3))*2^(2 - (n - 1) mod 3) for n > 1. - Hieronymus Fischer, Nov 11 2007
From Kiyoshi Akima (k_akima(AT)hotmail.com), Aug 31 2009: (Start)
a(n) = 3^floor(n/3)/(1 - (n mod 3)/4), n > 1.
a(n) = 3^(floor((n - 2)/3))*(2 + ((n - 2) mod 3)), n > 1. (End)
a(n) = (2^b)*3^(C - (b + d))*(4^d), n > 1, where C = floor((n + 1)/3), b = max(0, ((n + 1) mod 3) - 1), d = max(0, 1 - ((n + 1) mod 3)). - Jonathan T. Rowell, Jul 26 2011
G.f.: 1 / (1 - x / (1 - x / (1 + x / (1 - x / (1 + x / (1 + x^2 / (1 + x))))))). - Michael Somos, May 12 2012
3*a(n) = 2*a(n+1) if n > 1 and n is not divisible by 3. - Michael Somos, Jan 23 2014
a(n) = a(n-1) + largest proper divisor of a(n-1), n > 2. - Ivan Neretin, Apr 13 2015
a(n) = max{a(i)*a(n-i) : 0 < i < n} for n >= 4. - Jianing Song, Feb 15 2020
a(n+1) = a(n) + A038754(floor( (2*(n-1) + 1)/3 )), for n > 1. - Thomas Scheuerle, Oct 27 2022

Extensions

More terms and better description from Therese Biedl (biedl(AT)uwaterloo.ca), Jan 19 2000

A080257 Numbers having at least two distinct or a total of at least three prime factors.

Original entry on oeis.org

6, 8, 10, 12, 14, 15, 16, 18, 20, 21, 22, 24, 26, 27, 28, 30, 32, 33, 34, 35, 36, 38, 39, 40, 42, 44, 45, 46, 48, 50, 51, 52, 54, 55, 56, 57, 58, 60, 62, 63, 64, 65, 66, 68, 69, 70, 72, 74, 75, 76, 77, 78, 80, 81, 82, 84, 85, 86, 87, 88, 90, 91, 92, 93, 94, 95, 96, 98, 99, 100
Offset: 1

Views

Author

Reinhard Zumkeller, Feb 10 2003

Keywords

Comments

Complement of A000430; A080256(a(n)) > 3.
A084114(a(n)) > 0, see also A084110.
Also numbers greater than the square of their smallest prime-factor: a(n)>A020639(a(n))^2=A088377(a(n));
a(n)>A000430(k) for n<=13, a(n) < A000430(k) for n>13.
Numbers with at least 4 divisors. - Franklin T. Adams-Watters, Jul 28 2006
Union of A024619 and A033942; A211110(a(n)) > 2. - Reinhard Zumkeller, Apr 02 2012
Also numbers > 1 that are neither prime nor a square of a prime. Also numbers whose omega-sequence (A323023) has sum > 3. Numbers with omega-sequence summing to m are: A000040 (m = 1), A001248 (m = 3), A030078 (m = 4), A068993 (m = 5), A050997 (m = 6), A325264 (m = 7). - Gus Wiseman, Jul 03 2019
Numbers n such that sigma_2(n)*tau(n) = A001157(n)*A000005(n) >= 4*n^2. Note that sigma_2(n)*tau(n) >= sigma(n)^2 = A072861 for all n. - Joshua Zelinsky, Jan 23 2025

Examples

			8=2*2*2 and 10=2*5 are terms; 4=2*2 is not a term.
From _Gus Wiseman_, Jul 03 2019: (Start)
The sequence of terms together with their prime indices begins:
   6: {1,2}
   8: {1,1,1}
  10: {1,3}
  12: {1,1,2}
  14: {1,4}
  15: {2,3}
  16: {1,1,1,1}
  18: {1,2,2}
  20: {1,1,3}
  21: {2,4}
  22: {1,5}
  24: {1,1,1,2}
  26: {1,6}
  27: {2,2,2}
  28: {1,1,4}
  30: {1,2,3}
  32: {1,1,1,1,1}
(End)
		

Crossrefs

Programs

  • Haskell
    a080257 n = a080257_list !! (n-1)
    a080257_list = m a024619_list a033942_list where
       m xs'@(x:xs) ys'@(y:ys) | x < y  = x : m xs ys'
                               | x == y = x : m xs ys
                               | x > y  = y : m xs' ys
    -- Reinhard Zumkeller, Apr 02 2012
    
  • Mathematica
    Select[Range[100],PrimeNu[#]>1||PrimeOmega[#]>2&] (* Harvey P. Dale, Jul 23 2013 *)
  • PARI
    is(n)=omega(n)>1 || isprimepower(n)>2
    
  • PARI
    is(n)=my(k=isprimepower(n)); if(k, k>2, !isprime(n)) \\ Charles R Greathouse IV, Jan 23 2025

Formula

a(n) = n + O(n/log n). - Charles R Greathouse IV, Sep 14 2015

Extensions

Definition clarified by Harvey P. Dale, Jul 23 2013

A080258 Either 4th power of a prime, or product of a prime and the square of a different prime.

Original entry on oeis.org

12, 16, 18, 20, 28, 44, 45, 50, 52, 63, 68, 75, 76, 81, 92, 98, 99, 116, 117, 124, 147, 148, 153, 164, 171, 172, 175, 188, 207, 212, 236, 242, 244, 245, 261, 268, 275, 279, 284, 292, 316, 325, 332, 333, 338, 356, 363, 369, 387, 388, 404, 412, 423, 425, 428, 436
Offset: 1

Views

Author

Reinhard Zumkeller, Feb 10 2003

Keywords

Comments

Union of A030514 and A054753.
Numbers that equal the product of the proper divisors of their proper divisors. - Scott R. Shannon, Jul 04 2021

Examples

			81=3*3*3*3 and 50=2*5*5 are terms.
		

Crossrefs

Programs

  • Mathematica
    Module[{nn=20,p4,sdp},p4=Prime[Range[nn]]^4;sdp=#[[1]] #[[2]]^2&/@ Select[ Tuples[Prime[Range[nn]],2],#[[1]]!=#[[2]]&];Take[Join[p4,sdp]// Union,40]] (* Harvey P. Dale, Jan 31 2021 *)
  • PARI
    is(n)=my(f=factor(n)[,2]~); f==[4] || f==[2,1] || f==[1,2] \\ Charles R Greathouse IV, Oct 16 2015

Formula

A080256(a(n)) = 5.
A002033(a(n)) = 8. - Juri-Stepan Gerasimov, Sep 26 2009

A087009 Least m such that omega(m) + Omega(m) = n, or 0 if no such m exists.

Original entry on oeis.org

1, 0, 2, 4, 6, 12, 24, 48, 96, 192, 384, 768, 1536, 3072, 6144, 12288, 24576, 49152, 98304, 196608, 393216, 786432, 1572864, 3145728, 6291456, 12582912, 25165824, 50331648, 100663296, 201326592, 402653184, 805306368, 1610612736, 3221225472
Offset: 0

Views

Author

Lekraj Beedassy, Oct 13 2003

Keywords

Crossrefs

First occurrence of n in A080256.

Programs

  • Mathematica
    Join[{1, 0, 2, 4}, LinearRecurrence[{2}, {6}, 40]] (* Jean-François Alcover, Mar 07 2020 *)
  • PARI
    a(n) = {m = 1; while (omega(m) + bigomega(m) != n, m++); m} \\ Michel Marcus, Oct 23 2013

Formula

For n > 3, a(n) = 2^(n-3)*3. - Ray Chandler, Nov 01 2003
a(n) = A058764(n-2). - Philippe Deléham, Oct 17 2011
G.f.: (2*x^4-2*x^2+2*x-1)/(2*x-1). - Colin Barker, Oct 23 2012

Extensions

Corrected and extended by Ray Chandler, Nov 01 2003

A263653 a(n) = bigomega(n)^omega(n).

Original entry on oeis.org

1, 1, 2, 1, 4, 1, 3, 2, 4, 1, 9, 1, 4, 4, 4, 1, 9, 1, 9, 4, 4, 1, 16, 2, 4, 3, 9, 1, 27, 1, 5, 4, 4, 4, 16, 1, 4, 4, 16, 1, 27, 1, 9, 9, 4, 1, 25, 2, 9, 4, 9, 1, 16, 4, 16, 4, 4, 1, 64, 1, 4, 9, 6, 4, 27, 1, 9, 4, 27, 1, 25, 1, 4, 9, 9, 4, 27, 1, 25, 4, 4, 1, 64, 4, 4, 4, 16, 1, 64, 4, 9, 4, 4, 4, 36, 1, 9, 9, 16, 1, 27, 1, 16, 27, 4, 1, 25, 1, 27, 4, 25, 1, 27, 4, 9, 9, 4, 4, 125
Offset: 2

Views

Author

Ilya Gutkovskiy, Apr 17 2016

Keywords

Comments

a(n) = 1 if n is prime (A000040), a(n) > 1 if n is composite (A002808), a(n) = 2 if n is the square of a prime (A001248), a(n) = 3 if n is the cube of a prime (A030078).
If n is the k-th power of a prime then a(n) = k, i.e., a(p^k) = k (p prime, k >= 1): a(A000079(n)) = n, a(A000244(n)) = n, a(A000351(n)) = n, etc.
If n is a squarefree semiprime (A006881) then a(n) - sigma_0(n) = 0, where sigma_0(n) is the number of divisors of n (A000005).

Examples

			a(30) = 27, because the prime factorization of 30 is 2^1 * 3^1 * 5^1 -> bigomega(30) = 1+1+1, omega(30) = 3 and a(30) = (1+1+1)^3 = 27.
		

Crossrefs

Cf. A046660 (bigomega(n)-omega(n)), A080256 (bigomega(n)+omega(n)), A113901 (bigomega(n)*omega(n)).

Programs

  • Mathematica
    Table[PrimeOmega[n]^PrimeNu[n], {n, 2, 120}]
  • PARI
    lista(nn) = for(n=2, nn, print1(bigomega(n)^omega(n), ", ")); \\ Altug Alkan, Apr 18 2016

Formula

a(n) = A001222(n)^A001221(n).
Sign(a(n)-1) = A066247(n) = A005171(n).

A229121 a(n) = Omega(n)^2 - omega(n)^2.

Original entry on oeis.org

0, 0, 0, 3, 0, 0, 0, 8, 3, 0, 0, 5, 0, 0, 0, 15, 0, 5, 0, 5, 0, 0, 0, 12, 3, 0, 8, 5, 0, 0, 0, 24, 0, 0, 0, 12, 0, 0, 0, 12, 0, 0, 0, 5, 5, 0, 0, 21, 3, 5, 0, 5, 0, 12, 0, 12, 0, 0, 0, 7, 0, 0, 5, 35, 0, 0, 0, 5, 0, 0, 0, 21, 0, 0, 5, 5, 0, 0, 0, 21, 15, 0, 0
Offset: 1

Views

Author

Wesley Ivan Hurt, Sep 17 2013

Keywords

Comments

If n is squarefree, a(n) = 0. If n is a semiprime, then a(n) = 3 - 3 * mu(n).

Crossrefs

Cf. A001221 (omega), A001222 (Omega), A046660 (difference), A080256 (sum).

Programs

  • Maple
    with(numtheory); A001221 := proc(n) nops(numtheory[factorset](n)) end: seq(bigomega(k)^2 - A001221(k)^2, k=1..100);
  • Mathematica
    Table[PrimeOmega[n]^2 - PrimeNu[n]^2, {n, 100}] (* T. D. Noe, Sep 17 2013 *)

Formula

a(n) = A001222(n)^2 - A001221(n)^2.
a(n) = A046660(n) * A080256(n). - Amiram Eldar, Sep 16 2023
Showing 1-7 of 7 results.