cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A091629 Product of digits associated with A091628(n). Essentially the same as A007283.

Original entry on oeis.org

6, 12, 24, 48, 96, 192, 384, 768, 1536, 3072, 6144, 12288, 24576, 49152, 98304, 196608, 393216, 786432, 1572864, 3145728, 6291456, 12582912, 25165824, 50331648, 100663296, 201326592, 402653184, 805306368, 1610612736, 3221225472
Offset: 1

Views

Author

Enoch Haga, Jan 24 2004

Keywords

Comments

Sequence arising in Farideh Firoozbakht's solution to Prime Puzzle 251 - 23 is the only pointer prime (A089823) not containing digit "1".
The monotonic increasing value of successive product of digits strongly suggests that in successive n the digit 1 must be present.

Crossrefs

Sequences of the form (2*m+1)*2^n: A000079 (m=0), A007283 (m=1), A020714 (m=2), A005009 (m=3), A005010 (m=4), A005015 (m=5), A005029 (m=6), A110286 (m=7), A110287 (m=8), A110288 (m=9), A175805 (m=10), A248646 (m=11), A164161 (m=12), A175806 (m=13), A257548 (m=15).

Programs

Formula

a(n) = 3 * 2^n = product of digits of A091628(n).
From Philippe Deléham, Nov 23 2008: (Start)
a(n) = 6*2^(n-1).
a(n) = 2*a(n-1), with a(1) = 6.
G.f.: 6*x/(1-2*x). (End)
E.g.f.: 3*(exp(2*x) - 1). - G. C. Greubel, Jan 05 2023

Extensions

Edited and extended by Ray Chandler, Feb 07 2004

A110164 Expansion of (1-x^2)/(1+2x).

Original entry on oeis.org

1, -2, 3, -6, 12, -24, 48, -96, 192, -384, 768, -1536, 3072, -6144, 12288, -24576, 49152, -98304, 196608, -393216, 786432, -1572864, 3145728, -6291456, 12582912, -25165824, 50331648, -100663296, 201326592, -402653184, 805306368, -1610612736, 3221225472
Offset: 0

Views

Author

Paul Barry, Jul 14 2005

Keywords

Comments

Diagonal sums of Riordan array ((1-x)/(1+x),x/(1+x)^2), A110162.
The positive sequence with g.f. (1-x^2)/(1-2x) gives the row sums of the Riordan array (1+x,x/(1-x)). - Paul Barry, Jul 18 2005
The inverse g.f. is (1 + 2*x + x^2 + 2*x^3 + x^4 + 2*x^5 + x^6 + ...). - Gary W. Adamson, Jan 07 2011
In absolute value, essentially the same as A007283(n) = A003945(n+1) = A042950(n+1) = A082505(n+1) = A087009(n+3) = A091629(n) = A098011(n+4) = A111286(n+2). - M. F. Hasler, Apr 19 2015

Crossrefs

Programs

Formula

a(n) = 3*(-2)^(n-2) = 3*A122803(n-2) for n >= 2. a(n) = -2 a(n-1) for n >= 3. - M. F. Hasler, Apr 19 2015
E.g.f.: (1/4) - (x/2) + (3/4)*exp(-2*x). - Alejandro J. Becerra Jr., Jan 29 2021

A003461 Bode numbers multiplied by 10: 4 + 3*floor(2^(n-1)).

Original entry on oeis.org

4, 7, 10, 16, 28, 52, 100, 196, 388, 772, 1540, 3076, 6148, 12292, 24580, 49156, 98308, 196612, 393220, 786436, 1572868, 3145732, 6291460, 12582916, 25165828, 50331652, 100663300, 201326596, 402653188, 805306372, 1610612740, 3221225476
Offset: 0

Views

Author

N. J. A. Sloane, based on correspondence from W. I. McLaughlin, 1974

Keywords

Comments

Bode's law is that the average distance of the n-th planet from the sun is (4 + 3*floor(2^(n-1)))/10 astronomical units.

References

  • J. R. Newman, The World of Mathematics, Vol. I, p. 221, 1956.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • James J. Tattersall, Elementary Number Theory in Nine Chapters, Cambridge University Press, 1999, pages 23-25.

Crossrefs

Cf. A061654.
First differences of A087009.

Programs

  • Maple
    A003461:=-(-4+5*z+3*z**2)/((2*z-1)*(z-1)); [Conjectured (correctly) by Simon Plouffe in his 1992 dissertation]
  • Mathematica
    Table[4 + 3 Floor[2^(n - 1)], {n, 0, 31}] (* Robert G. Wilson v, Mar 19 2008 *)
    Join[{4},NestList[2#-4&,7,30]] (* Harvey P. Dale, Sep 03 2013 *)
  • PARI
    a(n)=4+3*floor(2^(n-1));

Formula

a(n) = 2*a(n-1) - 4, n > 1.
E.g.f.: (3*exp(2*x) + 8*exp(x) - 3)/2. - Stefano Spezia, Jul 04 2025

Extensions

Description corrected by Michael Somos

A325507 Heinz number of the integer partition whose parts are the multiplicities in the multiset union of all integer partitions of n.

Original entry on oeis.org

1, 2, 6, 28, 340, 3108, 106932, 2732340, 236790060, 19703562780, 3419598096420, 674127752953380, 264134168649181380, 95825592671995399620, 67662122741507082338220, 50556978553034312461203420, 69259146896604886347745839660, 104191622563656655781003976625020
Offset: 0

Views

Author

Gus Wiseman, May 07 2019

Keywords

Comments

Also the Heinz number of row n of A066633.
The Heinz number of an integer partition or sequence (y_1,...,y_k) is prime(y_1)*...*prime(y_k).

Examples

			The integer partitions of 4 are {(4), (3,1), (2,2), (2,1,1), (1,1,1,1)}, with multiset union {1,1,1,1,1,1,1,2,2,2,3,4}, with multiplicities (7,3,1,1), so a(4) = prime(7)*prime(3)*prime(1)*prime(1) = 340.
The sequence of terms together with their prime indices begins:
                        1: {}
                        2: {1}
                        6: {1,2}
                       28: {1,1,4}
                      340: {1,1,3,7}
                     3108: {1,1,2,4,12}
                   106932: {1,1,2,4,8,19}
                  2732340: {1,1,2,3,6,11,30}
                236790060: {1,1,2,3,6,9,19,45}
              19703562780: {1,1,2,3,5,8,15,26,67}
            3419598096420: {1,1,2,3,5,8,13,21,41,97}
          674127752953380: {1,1,2,3,5,7,12,18,31,56,139}
       264134168649181380: {1,1,2,3,5,7,12,17,28,45,83,195}
     95825592671995399620: {1,1,2,3,5,7,11,16,25,38,63,112,272}
  67662122741507082338220: {1,1,2,3,5,7,11,16,24,35,55,87,160,373}
		

Crossrefs

Programs

  • Mathematica
    Table[Times@@Prime/@Length/@Split[Sort[Join@@IntegerPartitions[n]]],{n,0,15}]

Formula

a(n) = Product_{i = 1..n} prime(A066633(n,i)).
a(n) = A181819(A003963(A325500(n))).
a(n) = A181819(A325501(n)).
A001222(a(n)) = n.
A056239(a(n)) = A006128(n).
For n > 0, A181819(a(n)) = A087009(n + 1).

A176414 Expansion of (7+8*x)/(1+2*x).

Original entry on oeis.org

7, -6, 12, -24, 48, -96, 192, -384, 768, -1536, 3072, -6144, 12288, -24576, 49152, -98304, 196608, -393216, 786432, -1572864, 3145728, -6291456, 12582912, -25165824, 50331648, -100663296, 201326592, -402653184, 805306368
Offset: 0

Views

Author

Klaus Brockhaus, Apr 17 2010

Keywords

Comments

Inverse binomial transform of A176415.

Crossrefs

Cf. A176415, A110164 (essentially the same), A122803.

Programs

  • Mathematica
    Join[{7},NestList[-2#&,-6,40]] (* Harvey P. Dale, Jun 20 2020 *)
  • PARI
    {for(n=0, 29, print1(polcoeff((7+8*x)/(1+2*x)+x*O(x^n), n), ", "))}
    
  • PARI
    A176414(n)=3*(-2)^n+!n*4 \\ M. F. Hasler, Apr 19 2015

Formula

a(n) = A110164(n+2) for n > 0.
a(n) = 3*(-2)^n = 3*A122803(n+1) for n > 0; a(0) = 7.
a(n) = -2*a(n-1) for n > 1; a(0) = 7, a(1) = -6.
a(n) = (-1)^n*A132477(n) = (-1)^n*A122391(n+3), n>1.
a(n) = (-1)^n*A111286(n+2) = (-1)^n*A098011(n+4) = (-1)^n*A091629(n) = (-1)^n*A087009(n+3) = (-1)^n*A082505(n+1) = (-1)^n*A042950(n+1) = (-1)^n*A007283(n) = (-1)^n*A003945(n+1), n>0. - R. J. Mathar, Dec 10 2010
E.g.f.: 4 + 3*exp(-2*x). - Alejandro J. Becerra Jr., Feb 15 2021

Extensions

Edited by M. F. Hasler, Apr 19 2015

A114958 a(n) = 6*2^(n+1) - 5*(n+1) - 4.

Original entry on oeis.org

3, 10, 29, 72, 163, 350, 729, 1492, 3023, 6090, 12229, 24512, 49083, 98230, 196529, 393132, 786343, 1572770, 3145629, 6291352, 12582803, 25165710, 50331529, 100663172, 201326463, 402653050, 805306229, 1610612592, 3221225323
Offset: 0

Views

Author

Creighton Dement, Feb 21 2006

Keywords

Crossrefs

Programs

  • Magma
    [6*2^(n+1) - 5*(n+1) - 4: n in [0..30] ]; // Vincenzo Librandi, May 18 2011
    
  • PARI
    Vec((3 - 2*x + 4*x^2) / ((1 - x)^2*(1 - 2*x)) + O(x^40)) \\ Colin Barker, Apr 30 2019

Formula

From Colin Barker, Apr 30 2019: (Start)
G.f.: (3 - 2*x + 4*x^2) / ((1 - x)^2*(1 - 2*x)).
a(n) = 4*a(n-1) - 5*a(n-2) + 2*a(n-3) for n>2.
(End)
Showing 1-6 of 6 results.