cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 12 results. Next

A297106 Xor-Moebius transform of A156552.

Original entry on oeis.org

0, 1, 2, 2, 4, 6, 8, 4, 4, 12, 16, 12, 32, 24, 12, 8, 64, 12, 128, 24, 24, 48, 256, 24, 8, 96, 8, 48, 512, 20, 1024, 16, 48, 192, 24, 24, 2048, 384, 96, 48, 4096, 40, 8192, 96, 24, 768, 16384, 48, 16, 24, 192, 192, 32768, 24, 48, 96, 384, 1536, 65536, 40, 131072, 3072, 48, 32, 96, 80, 262144, 384, 768, 40, 524288, 48
Offset: 1

Views

Author

Antti Karttunen, Dec 25 2017

Keywords

Comments

Unique sequence satisfying SumXOR_{d divides n} a(d) = A156552(n) for all n > 0, where SumXOR is the analog of summation under the binary XOR operation. See A295901 for a list of some of the properties of the Xor-Moebius transform.
The ordinary Möbius transform of A156552 is given in A297112.
It seems that A091629 gives the fixed points of this sequence.

Crossrefs

Programs

  • PARI
    A064989(n) = {my(f); f = factor(n); if((n>1 && f[1,1]==2), f[1,2] = 0); for (i=1, #f~, f[i,1] = precprime(f[i,1]-1)); factorback(f)};
    A156552(n) = if(1==n, 0, if(!(n%2), 1+(2*A156552(n/2)), 2*A156552(A064989(n))));
    A297106(n) = { my(v=0); fordiv(n, d, if(issquarefree(n/d), v=bitxor(v, A156552(d)))); (v); } \\ after code in A295901.

A110164 Expansion of (1-x^2)/(1+2x).

Original entry on oeis.org

1, -2, 3, -6, 12, -24, 48, -96, 192, -384, 768, -1536, 3072, -6144, 12288, -24576, 49152, -98304, 196608, -393216, 786432, -1572864, 3145728, -6291456, 12582912, -25165824, 50331648, -100663296, 201326592, -402653184, 805306368, -1610612736, 3221225472
Offset: 0

Views

Author

Paul Barry, Jul 14 2005

Keywords

Comments

Diagonal sums of Riordan array ((1-x)/(1+x),x/(1+x)^2), A110162.
The positive sequence with g.f. (1-x^2)/(1-2x) gives the row sums of the Riordan array (1+x,x/(1-x)). - Paul Barry, Jul 18 2005
The inverse g.f. is (1 + 2*x + x^2 + 2*x^3 + x^4 + 2*x^5 + x^6 + ...). - Gary W. Adamson, Jan 07 2011
In absolute value, essentially the same as A007283(n) = A003945(n+1) = A042950(n+1) = A082505(n+1) = A087009(n+3) = A091629(n) = A098011(n+4) = A111286(n+2). - M. F. Hasler, Apr 19 2015

Crossrefs

Programs

Formula

a(n) = 3*(-2)^(n-2) = 3*A122803(n-2) for n >= 2. a(n) = -2 a(n-1) for n >= 3. - M. F. Hasler, Apr 19 2015
E.g.f.: (1/4) - (x/2) + (3/4)*exp(-2*x). - Alejandro J. Becerra Jr., Jan 29 2021

A089823 Primes p such that the next prime after p can be obtained from p by adding the product of the digits of p.

Original entry on oeis.org

23, 61, 1123, 1231, 1321, 2111, 2131, 11261, 11621, 12113, 13121, 15121, 19121, 21911, 22511, 27211, 61211, 116113, 131231, 312161, 611113, 1111211, 1111213, 1111361, 1112611, 1123151, 1411411, 1612111, 2111411, 2121131, 3112111
Offset: 1

Views

Author

Joseph L. Pe, Jan 09 2004

Keywords

Comments

I call these primes (multiplicative) "pointer primes", in the sense that such primes p "point" to the next prime after p when the product of the digits of p is added to p. 23 is the only pointer prime < 10^7 which does not contain the digit "1". Are there other pointer primes not containing the digit "1"?
See Prime Puzzle 251 link for several arguments that 23 is the only pointer prime not containing digit "1".

Examples

			23 + product of digits of 23 = 29, which is the next prime after 23. Hence 23 belongs to the sequence.
		

Crossrefs

Programs

  • Mathematica
    r = {}; Do[p = Prime[i]; q = Prime[i + 1]; If[p + Apply[Times, IntegerDigits[p]] == q, r = Append[r, p]], {i, 1, 10^6}]; r

A091628 Concatenation of n 2's followed by 3.

Original entry on oeis.org

23, 223, 2223, 22223, 222223, 2222223, 22222223, 222222223, 2222222223, 22222222223, 222222222223, 2222222222223, 22222222222223, 222222222222223, 2222222222222223, 22222222222222223, 222222222222222223
Offset: 1

Views

Author

Enoch Haga, Jan 24 2004

Keywords

Comments

Sequence arising in Farideh Firoozbakht's solution to Prime Puzzle 251; 23 is the only pointer prime (A089823) not containing the digit "1".

Crossrefs

Programs

  • Magma
    [ n eq 1 select 23 else 10*Self(n-1)-7: n in [1..17] ];

Formula

a(n) = (10^(n+1) - 1)/9*2 + 1.
a(n) = 10*a(n-1) - 7, with a(1)=23. - Vincenzo Librandi, Nov 16 2010
From Colin Barker, May 06 2012: (Start)
a(n) = 11*a(n-1) - 10*a(n-2).
G.f.: x*(23-30*x)/((1-x)*(1-10*x)). (End)

Extensions

Edited and extended by Ray Chandler, Feb 07 2004

A091630 Numbers n + product of digits associated with A091628.

Original entry on oeis.org

29, 235, 2247, 22271, 222319, 2222415, 22222607, 222222991, 2222223759, 22222225295, 222222228367, 2222222234511, 22222222246799, 222222222271375, 2222222222320527, 22222222222418831, 222222222222615439
Offset: 1

Views

Author

Enoch Haga, Jan 24 2004

Keywords

Comments

Sequence arising in Farideh Firoozbakht's solution to Prime Puzzle 251 - 23 is the only pointer prime (A089823) not containing the digit "1".
The monotonically increasing value of successive product of digits (A091629) strongly suggests that in successive n the digit 1 must be present.

Examples

			a(1) = 23 + 6 = 29.
		

Crossrefs

Formula

a(n) = A091628(n) + A091629(n).
From Chai Wah Wu, Feb 12 2021: (Start)
a(n) = 13*a(n-1) - 32*a(n-2) + 20*a(n-3) for n > 3.
G.f.: x*(-120*x^2 + 142*x - 29)/((x - 1)*(2*x - 1)*(10*x - 1)). (End)

Extensions

Edited and extended by Ray Chandler, Feb 07 2004

A091631 Next prime associated with A091628.

Original entry on oeis.org

29, 227, 2237, 22229, 222247, 2222239, 22222253, 222222227, 2222222243, 22222222273, 222222222301, 2222222222243, 22222222222229, 222222222222227, 2222222222222281, 22222222222222301, 222222222222222281
Offset: 1

Views

Author

Enoch Haga, Jan 24 2004

Keywords

Comments

Sequence arising in Farideh Firoozbakht's solution to Prime Puzzle 251 - 23 is the only pointer prime (A089823) not containing the digit "1".
The monotonically increasing value of successive product of digits (A091629) strongly suggests that in successive n the digit 1 must be present.

Examples

			a(1) = nextprime(23+1) = 29.
		

Crossrefs

Programs

  • PARI
    a(n) = nextprime((10^(n+1) - 1)/9*2 + 2); \\ Michel Marcus, Mar 18 2018

Formula

a(n) = A007918(A091628(n)+1).

Extensions

Edited and extended by Ray Chandler, Feb 07 2004

A091632 Excess of n + product of digits over next prime associated with A091628.

Original entry on oeis.org

0, 8, 10, 42, 72, 176, 354, 764, 1516, 3022, 6066, 12268, 24570, 49148, 98246, 196530, 393158, 786406, 1572834, 3145674, 6291440, 12582874, 25165764, 50331634, 100663192, 201326576, 402653180, 805306350, 1610612690, 3221225038
Offset: 1

Views

Author

Enoch Haga, Jan 24 2004

Keywords

Comments

Sequence arising in Farideh Firoozbakht's solution to Prime Puzzle 251 - 23 is the only pointer prime (A089823) not containing the digit "1".
The monotonically increasing value of successive excess (and product of digits (A091629)) strongly suggests that in successive n the digit 1 must be present.

Examples

			a(2) = 235 - 227 = 8.
		

Crossrefs

Formula

a(n) = A091630(n) - A091631(n).

Extensions

Edited and extended by Ray Chandler, Feb 07 2004

A253145 Triangular numbers (A000217) omitting the term 1.

Original entry on oeis.org

0, 3, 6, 10, 15, 21, 28, 36, 45, 55, 66, 78, 91, 105, 120, 136, 153, 171, 190, 210, 231, 253, 276, 300, 325, 351, 378, 406, 435, 465, 496, 528, 561, 595, 630, 666, 703, 741, 780, 820, 861, 903, 946, 990, 1035, 1081, 1128, 1176, 1225, 1275
Offset: 0

Views

Author

Paul Curtz, Mar 23 2015

Keywords

Comments

The full triangle of the inverse Akiyama-Tanigawa transform applied to (-1)^n*A062510(n)=3*(-1)^n*A001045(n) yielding a(n) is
0, 3, 6, 10, 15, 21, 28, 36, ...
-3, -6, -12, -20, -30, -42, -56, ... essentially -A002378
3, 12, 24, 40, 60, 84, ... essentially A046092
-9, -24, -48, -80, -120, ... essentially -A033996
15, 48, 96, 160, ...
-33, -96, -192, ...
63, 192, ...
-129, ...
etc.
First column: (-1)^n*A062510(n).
The following columns are multiples of A122803(n)=(-2)^n. See A007283(n), A091629(n), A020714(n+1), A110286, A175805(n), 4*A005010(n).
An autosequence of the first kind is a sequence whose main diagonal is A000004 = 0's.
b(n) = 0, 0 followed by a(n) is an autosequence of the first kind.
The successive differences of b(n) are
0, 0, 0, 3, 6, 10, 15, 21, ...
0, 0, 3, 3, 4, 5, 6, 7, ... see A194880(n)
0, 3, 0, 1, 1, 1, 1, 1, ...
3, -3, 1, 0, 0, 0, 0, 0, ...
-6, 4, -1, 0, 0, 0, 0, 0, ...
10, -5, 1, 0, 0, 0, 0, 0, ...
-15, 6, -1, 0, 0, 0, 0, 0, ...
21, -7, 1, 0, 0, 0, 0, 0, ...
The inverse binomial transform (first column) is the signed sequence. This is general.
Also generalized hexagonal numbers without 1. - Omar E. Pol, Mar 23 2015

Crossrefs

Programs

Formula

Inverse Akiyama-Tanigawa transform of (-1)^n*A062510(n).
a(n) = (n+1)*(n+2)/2 for n > 0. - Charles R Greathouse IV, Mar 23 2015
a(n+1) = 3*A001840(n+1) + A022003(n).
a(n) = A161680(n+2) for n >= 1. - Georg Fischer, Oct 30 2018
From Stefano Spezia, May 28 2025: (Start)
G.f.: x*(3 - 3*x + x^2)/(1 - x)^3.
E.g.f.: exp(x)*(2 + 4*x + x^2)/2 - 1. (End)

A383961 Square array read by upward antidiagonals: T(n,k) is the n-th number whose largest odd divisor is its k-th divisor, n >= 1, k >= 1.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 8, 7, 9, 15, 16, 11, 10, 20, 18, 32, 13, 12, 21, 50, 36, 64, 17, 14, 27, 81, 45, 30, 128, 19, 22, 28, 88, 63, 42, 105, 256, 23, 24, 33, 98, 75, 54, 135, 60, 512, 29, 25, 35, 104, 99, 66, 165, 84, 120, 1024, 31, 26, 39, 136, 117, 70, 189, 108, 140, 90
Offset: 1

Views

Author

Omar E. Pol, May 16 2025

Keywords

Comments

This is a permutation of the positive integers.
From Peter Munn, May 18 2025: (Start)
Numbers with the same factorization pattern of their sequence of divisors (see A290110) and the same parity appear here in the same column.
For example, each column k > 2 includes the subsequence 2^(k-2) * p for all prime p > 2^(k-2).
(End)

Examples

			The corner 15 X 15 of the square array is as follows:
      1,  3,  6,  15,  18,  36,  30, 105,  60, 120,  90, 315,  816, 1360, 180, ...
      2,  5,  9,  20,  50,  45,  42, 135,  84, 140, 126, 324,  880, 1520, 210, ...
      4,  7, 10,  21,  81,  63,  54, 165, 108, 168, 150, 432,  912, 1632, 252, ...
      8, 11, 12,  27,  88,  75,  66, 189, 132, 220, 198, 440, 1040, 1760, 270, ...
     16, 13, 14,  28,  98,  99,  70, 195, 156, 240, 216, 495, 1056, 1824, 300, ...
     32, 17, 22,  33, 104, 117,  72, 200, 162, 260, 234, 520, 1104, 1840, 330, ...
     64, 19, 24,  35, 136, 147,  78, 231, 204, 308, 264, 525, 1120, 1904, 378, ...
    128, 23, 25,  39, 152, 153, 100, 255, 225, 340, 280, 528, 1144, 2000, 390, ...
    256, 29, 26,  40, 176, 171, 102, 273, 228, 364, 294, 560, 1232, 2080, 396, ...
    512, 31, 34,  44, 184, 175, 110, 285, 276, 380, 306, 585, 1248, 2128, 462, ...
   1024, 37, 38,  51, 208, 207, 114, 297, 348, 405, 312, 616, 1392, 2208, 468, ...
   2048, 41, 46,  52, 232, 243, 130, 345, 372, 460, 336, 624, 1456, 2288, 510, ...
   4096, 43, 48,  55, 242, 245, 138, 351, 400, 476, 342, 675, 1458, 2320, 546, ...
   8192, 47, 49,  56, 248, 261, 144, 357, 441, 480, 350, 680, 1488, 2464, 570, ...
  16384, 53, 58,  57, 296, 272, 154, 375, 444, 500, 408, 693, 1496, 2480, 588, ...
  ...
		

Crossrefs

Column 1 gives A000079.
Column 2 gives A065091.
Column 3 consists of (A001248 U A091629 U A100484)\{4}.
Column 4 consists of numbers >= 15 in (A001749 U A030078 U A046388 U A070875).
Row 1 gives A383402.

Programs

  • Mathematica
    f[n_] := If[OddQ[n], DivisorSigma[0, n], FirstPosition[Divisors[n], n/2^IntegerExponent[n, 2]][[1]]]; seq[m_] := Module[{t = Table[0, {m}, {m}], v = Table[0, {m}], c = 0, k = 1, i, j}, While[c < m*(m + 1)/2, i = f[k]; If[i <= m, j = v[[i]] + 1; If[j <= m - i + 1, t[[i]][[j]] = k; v[[i]]++; c++]]; k++]; Table[t[[j]][[i - j + 1]], {i, 1, m}, {j, 1, i}] // Flatten]; seq[11] (* Amiram Eldar, May 16 2025 *)

A176414 Expansion of (7+8*x)/(1+2*x).

Original entry on oeis.org

7, -6, 12, -24, 48, -96, 192, -384, 768, -1536, 3072, -6144, 12288, -24576, 49152, -98304, 196608, -393216, 786432, -1572864, 3145728, -6291456, 12582912, -25165824, 50331648, -100663296, 201326592, -402653184, 805306368
Offset: 0

Views

Author

Klaus Brockhaus, Apr 17 2010

Keywords

Comments

Inverse binomial transform of A176415.

Crossrefs

Cf. A176415, A110164 (essentially the same), A122803.

Programs

  • Mathematica
    Join[{7},NestList[-2#&,-6,40]] (* Harvey P. Dale, Jun 20 2020 *)
  • PARI
    {for(n=0, 29, print1(polcoeff((7+8*x)/(1+2*x)+x*O(x^n), n), ", "))}
    
  • PARI
    A176414(n)=3*(-2)^n+!n*4 \\ M. F. Hasler, Apr 19 2015

Formula

a(n) = A110164(n+2) for n > 0.
a(n) = 3*(-2)^n = 3*A122803(n+1) for n > 0; a(0) = 7.
a(n) = -2*a(n-1) for n > 1; a(0) = 7, a(1) = -6.
a(n) = (-1)^n*A132477(n) = (-1)^n*A122391(n+3), n>1.
a(n) = (-1)^n*A111286(n+2) = (-1)^n*A098011(n+4) = (-1)^n*A091629(n) = (-1)^n*A087009(n+3) = (-1)^n*A082505(n+1) = (-1)^n*A042950(n+1) = (-1)^n*A007283(n) = (-1)^n*A003945(n+1), n>0. - R. J. Mathar, Dec 10 2010
E.g.f.: 4 + 3*exp(-2*x). - Alejandro J. Becerra Jr., Feb 15 2021

Extensions

Edited by M. F. Hasler, Apr 19 2015
Showing 1-10 of 12 results. Next