A091629
Product of digits associated with A091628(n). Essentially the same as A007283.
Original entry on oeis.org
6, 12, 24, 48, 96, 192, 384, 768, 1536, 3072, 6144, 12288, 24576, 49152, 98304, 196608, 393216, 786432, 1572864, 3145728, 6291456, 12582912, 25165824, 50331648, 100663296, 201326592, 402653184, 805306368, 1610612736, 3221225472
Offset: 1
Sequences of the form (2*m+1)*2^n:
A000079 (m=0),
A007283 (m=1),
A020714 (m=2),
A005009 (m=3),
A005010 (m=4),
A005015 (m=5),
A005029 (m=6),
A110286 (m=7),
A110287 (m=8),
A110288 (m=9),
A175805 (m=10),
A248646 (m=11),
A164161 (m=12),
A175806 (m=13),
A257548 (m=15).
A091630
Numbers n + product of digits associated with A091628.
Original entry on oeis.org
29, 235, 2247, 22271, 222319, 2222415, 22222607, 222222991, 2222223759, 22222225295, 222222228367, 2222222234511, 22222222246799, 222222222271375, 2222222222320527, 22222222222418831, 222222222222615439
Offset: 1
A091631
Next prime associated with A091628.
Original entry on oeis.org
29, 227, 2237, 22229, 222247, 2222239, 22222253, 222222227, 2222222243, 22222222273, 222222222301, 2222222222243, 22222222222229, 222222222222227, 2222222222222281, 22222222222222301, 222222222222222281
Offset: 1
a(1) = nextprime(23+1) = 29.
A091632
Excess of n + product of digits over next prime associated with A091628.
Original entry on oeis.org
0, 8, 10, 42, 72, 176, 354, 764, 1516, 3022, 6066, 12268, 24570, 49148, 98246, 196530, 393158, 786406, 1572834, 3145674, 6291440, 12582874, 25165764, 50331634, 100663192, 201326576, 402653180, 805306350, 1610612690, 3221225038
Offset: 1
A089823
Primes p such that the next prime after p can be obtained from p by adding the product of the digits of p.
Original entry on oeis.org
23, 61, 1123, 1231, 1321, 2111, 2131, 11261, 11621, 12113, 13121, 15121, 19121, 21911, 22511, 27211, 61211, 116113, 131231, 312161, 611113, 1111211, 1111213, 1111361, 1112611, 1123151, 1411411, 1612111, 2111411, 2121131, 3112111
Offset: 1
23 + product of digits of 23 = 29, which is the next prime after 23. Hence 23 belongs to the sequence.
-
r = {}; Do[p = Prime[i]; q = Prime[i + 1]; If[p + Apply[Times, IntegerDigits[p]] == q, r = Append[r, p]], {i, 1, 10^6}]; r
A093135
Expansion of g.f. (1-8*x)/((1-x)*(1-10*x)).
Original entry on oeis.org
1, 3, 23, 223, 2223, 22223, 222223, 2222223, 22222223, 222222223, 2222222223, 22222222223, 222222222223, 2222222222223, 22222222222223, 222222222222223, 2222222222222223, 22222222222222223, 222222222222222223, 2222222222222222223, 22222222222222222223, 222222222222222222223
Offset: 0
Showing 1-6 of 6 results.
Comments