A091629
Product of digits associated with A091628(n). Essentially the same as A007283.
Original entry on oeis.org
6, 12, 24, 48, 96, 192, 384, 768, 1536, 3072, 6144, 12288, 24576, 49152, 98304, 196608, 393216, 786432, 1572864, 3145728, 6291456, 12582912, 25165824, 50331648, 100663296, 201326592, 402653184, 805306368, 1610612736, 3221225472
Offset: 1
Sequences of the form (2*m+1)*2^n:
A000079 (m=0),
A007283 (m=1),
A020714 (m=2),
A005009 (m=3),
A005010 (m=4),
A005015 (m=5),
A005029 (m=6),
A110286 (m=7),
A110287 (m=8),
A110288 (m=9),
A175805 (m=10),
A248646 (m=11),
A164161 (m=12),
A175806 (m=13),
A257548 (m=15).
A091628
Concatenation of n 2's followed by 3.
Original entry on oeis.org
23, 223, 2223, 22223, 222223, 2222223, 22222223, 222222223, 2222222223, 22222222223, 222222222223, 2222222222223, 22222222222223, 222222222222223, 2222222222222223, 22222222222222223, 222222222222222223
Offset: 1
A091630
Numbers n + product of digits associated with A091628.
Original entry on oeis.org
29, 235, 2247, 22271, 222319, 2222415, 22222607, 222222991, 2222223759, 22222225295, 222222228367, 2222222234511, 22222222246799, 222222222271375, 2222222222320527, 22222222222418831, 222222222222615439
Offset: 1
A091631
Next prime associated with A091628.
Original entry on oeis.org
29, 227, 2237, 22229, 222247, 2222239, 22222253, 222222227, 2222222243, 22222222273, 222222222301, 2222222222243, 22222222222229, 222222222222227, 2222222222222281, 22222222222222301, 222222222222222281
Offset: 1
a(1) = nextprime(23+1) = 29.
A091632
Excess of n + product of digits over next prime associated with A091628.
Original entry on oeis.org
0, 8, 10, 42, 72, 176, 354, 764, 1516, 3022, 6066, 12268, 24570, 49148, 98246, 196530, 393158, 786406, 1572834, 3145674, 6291440, 12582874, 25165764, 50331634, 100663192, 201326576, 402653180, 805306350, 1610612690, 3221225038
Offset: 1
A125840
Two-sided multiplicative pointer primes.
Original entry on oeis.org
1123, 21911, 3116111, 11413111, 12111331, 14111311, 316111111, 1111131821, 11112119111, 11161211111, 111161111311, 111211231111, 1111112111191, 2111191111111, 11131211113111, 21111121126111, 31111127111111, 111211151611111, 111211222111123, 121132111712111
Offset: 1
11112119111 is in the sequence because previous_prime(11112119111)
= 11112119111 - 1*1*1*1*2*1*1*9*1*1*1 and next_prime(11112119111)
= 11112119111 + 1*1*1*1*2*1*1*9*1*1*1.
-
Do[p=Prime[m];P=Apply[Times,IntegerDigits[p]];If[Prime[m-1]== p-P&&Prime[m+1]==p+P,Print[p]],{m,2,140000000}]
A157655
Zeroless primes p such that the next prime after p can be obtained from p by adding the sum and product of the digits of p.
Original entry on oeis.org
11411, 16111, 1112113, 1151113, 14161111, 14611111, 111115141, 111253111, 115112113, 122112311, 151151111, 211711111, 1111116211, 1121123111, 1121181311, 1211215111, 1412113111, 1416131111, 2111121511, 2111215111
Offset: 1
The digits of 11411 add up to 8. The product of the digits is 4. So 11411+8+4 = 11423, the next prime after 11411. So 11411 is in the sequence.
-
zpQ[n_]:=Module[{idn=IntegerDigits[n]},FreeQ[idn,0]&&NextPrime[n] == n+ Total[ idn]+Times@@idn]; Select[Prime[Range[11*10^7]],zpQ] (* Harvey P. Dale, Jan 14 2016 *)
Showing 1-7 of 7 results.
Comments