A091629 Product of digits associated with A091628(n). Essentially the same as A007283.
6, 12, 24, 48, 96, 192, 384, 768, 1536, 3072, 6144, 12288, 24576, 49152, 98304, 196608, 393216, 786432, 1572864, 3145728, 6291456, 12582912, 25165824, 50331648, 100663296, 201326592, 402653184, 805306368, 1610612736, 3221225472
Offset: 1
Links
- G. C. Greubel, Table of n, a(n) for n = 1..1000
- Tanya Khovanova, Recursive Sequences
- Carlos Rivera, Puzzle 251, Pointer primes, The Prime Puzzles and Problems Connection.
- Index entries for linear recurrences with constant coefficients, signature (2).
Crossrefs
Programs
-
Magma
[3*2^n : n in [1..40]]; // Wesley Ivan Hurt, Jul 17 2020
-
Mathematica
3*2^Range[1, 60] (* Vladimir Joseph Stephan Orlovsky, Jun 09 2011 *)
-
SageMath
[3*2^n for n in range(1,51)] # G. C. Greubel, Jan 05 2023
Formula
a(n) = 3 * 2^n = product of digits of A091628(n).
From Philippe Deléham, Nov 23 2008: (Start)
a(n) = 6*2^(n-1).
a(n) = 2*a(n-1), with a(1) = 6.
G.f.: 6*x/(1-2*x). (End)
E.g.f.: 3*(exp(2*x) - 1). - G. C. Greubel, Jan 05 2023
Extensions
Edited and extended by Ray Chandler, Feb 07 2004
Comments