cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 53 results. Next

A329604 Numbers k such that A156552(k) == 1 (mod 3); numbers k for which A156552(2*k) is a multiple of 3.

Original entry on oeis.org

2, 5, 8, 11, 15, 17, 18, 20, 23, 31, 32, 33, 41, 42, 44, 45, 47, 50, 51, 59, 60, 67, 68, 69, 72, 73, 77, 78, 80, 83, 92, 93, 97, 98, 99, 103, 109, 110, 114, 119, 123, 124, 125, 127, 128, 132, 135, 137, 141, 149, 153, 157, 161, 162, 164, 167, 168, 170, 174, 176, 177, 179, 180, 182, 188, 191, 197, 200, 201, 204, 207, 210, 211, 217, 219, 221, 222
Offset: 1

Views

Author

Antti Karttunen, Nov 21 2019

Keywords

Comments

Even terms of A329609, divided by two.
Numbers k for which A156552(k) == 1 (mod 3). - Antti Karttunen, Feb 27 2020

Crossrefs

Sequence A329603 sorted into ascending order.
Positions of 1's in A329903 and in A332814.
Cf. A001105 (subsequence apart from the initial 0).
Cf. A031368 (a subsequence of prime terms).
Cf. also A332812, A324814, A332821.

Programs

  • PARI
    A156552(n) = {my(f = factor(n), p2 = 1, res = 0); for(i = 1, #f~, p = 1 << (primepi(f[i, 1]) - 1); res += (p * p2 * (2^(f[i, 2]) - 1)); p2 <<= f[i, 2]); res}; \\ From A156552
    isA329604(n) = !(A156552(2*n)%3);

Extensions

New primary definition added by Antti Karttunen, Mar 01 2020

A366322 Heinz numbers of integer partitions containing at least one odd part. Numbers divisible by at least one prime of odd index.

Original entry on oeis.org

2, 4, 5, 6, 8, 10, 11, 12, 14, 15, 16, 17, 18, 20, 22, 23, 24, 25, 26, 28, 30, 31, 32, 33, 34, 35, 36, 38, 40, 41, 42, 44, 45, 46, 47, 48, 50, 51, 52, 54, 55, 56, 58, 59, 60, 62, 64, 65, 66, 67, 68, 69, 70, 72, 73, 74, 75, 76, 77, 78, 80, 82, 83, 84, 85, 86
Offset: 1

Views

Author

Gus Wiseman, Oct 14 2023

Keywords

Comments

The Heinz number of a partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k). This gives a bijective correspondence between positive integers and integer partitions.

Examples

			The terms together with their prime indices begin:
    2: {1}
    4: {1,1}
    5: {3}
    6: {1,2}
    8: {1,1,1}
   10: {1,3}
   11: {5}
   12: {1,1,2}
   14: {1,4}
   15: {2,3}
   16: {1,1,1,1}
   17: {7}
   18: {1,2,2}
   20: {1,1,3}
   22: {1,5}
   23: {9}
   24: {1,1,1,2}
		

Crossrefs

The complement is A066207, counted by A035363.
For all odd parts we have A066208, counted by A000009.
Partitions of this type are counted by A086543.
For even instead of odd we have A324929, counted by A047967.
A031368 lists primes of odd index.
A112798 list prime indices, sum A056239.
A257991 counts odd prime indices, distinct A324966.

Programs

  • Mathematica
    Select[Range[100],Or@@OddQ/@PrimePi/@First/@FactorInteger[#]&]

Formula

A257991(a(n)) > 0.

A372591 Numbers whose binary weight (A000120) plus bigomega (A001222) is even.

Original entry on oeis.org

2, 6, 7, 8, 9, 10, 11, 13, 15, 19, 24, 28, 31, 32, 33, 34, 36, 37, 39, 40, 41, 42, 44, 46, 47, 50, 51, 52, 54, 57, 58, 59, 60, 61, 65, 67, 70, 73, 76, 77, 79, 85, 86, 90, 95, 96, 97, 98, 103, 106, 107, 109, 110, 111, 112, 117, 119, 123, 124, 126, 127, 128, 129
Offset: 1

Views

Author

Gus Wiseman, May 14 2024

Keywords

Comments

The odd version is A372590.

Examples

			The terms (center), their binary indices (left), and their weakly decreasing prime indices (right) begin:
          {2}   2  (1)
        {2,3}   6  (2,1)
      {1,2,3}   7  (4)
          {4}   8  (1,1,1)
        {1,4}   9  (2,2)
        {2,4}  10  (3,1)
      {1,2,4}  11  (5)
      {1,3,4}  13  (6)
    {1,2,3,4}  15  (3,2)
      {1,2,5}  19  (8)
        {4,5}  24  (2,1,1,1)
      {3,4,5}  28  (4,1,1)
  {1,2,3,4,5}  31  (11)
          {6}  32  (1,1,1,1,1)
        {1,6}  33  (5,2)
        {2,6}  34  (7,1)
        {3,6}  36  (2,2,1,1)
      {1,3,6}  37  (12)
    {1,2,3,6}  39  (6,2)
        {4,6}  40  (3,1,1,1)
      {1,4,6}  41  (13)
      {2,4,6}  42  (4,2,1)
		

Crossrefs

For sum (A372428, zeros A372427) we have A372587, complement A372586.
For minimum (A372437) we have A372440, complement A372439.
Positions of even terms in A372441, zeros A071814.
For maximum (A372442, zeros A372436) we have A372589, complement A372588.
The complement is A372590.
For just binary indices:
- length: A001969, complement A000069
- sum: A158704, complement A158705
- minimum: A036554, complement A003159
- maximum: A053754, complement A053738
For just prime indices:
- length: A026424 A028260 (count A027187), complement (count A027193)
- sum: A300061 (count A058696), complement A300063 (count A058695)
- minimum: A340933 (count A026805), complement A340932 (count A026804)
- maximum: A244990 (count A027187), complement A244991 (count A027193)
A019565 gives Heinz number of binary indices, adjoint A048675.
A029837 gives greatest binary index, least A001511.
A031215 lists even-indexed primes, odd A031368.
A048793 lists binary indices, length A000120, reverse A272020, sum A029931.
A070939 gives length of binary expansion.
A112798 lists prime indices, length A001222, reverse A296150, sum A056239.

Programs

  • Mathematica
    Select[Range[100],EvenQ[DigitCount[#,2,1]+PrimeOmega[#]]&]

A247503 Completely multiplicative with a(prime(n)) = prime(n)^(n mod 2).

Original entry on oeis.org

1, 2, 1, 4, 5, 2, 1, 8, 1, 10, 11, 4, 1, 2, 5, 16, 17, 2, 1, 20, 1, 22, 23, 8, 25, 2, 1, 4, 1, 10, 31, 32, 11, 34, 5, 4, 1, 2, 1, 40, 41, 2, 1, 44, 5, 46, 47, 16, 1, 50, 17, 4, 1, 2, 55, 8, 1, 2, 59, 20, 1, 62, 1, 64, 5, 22, 67, 68, 23, 10, 1, 8, 73, 2, 25, 4
Offset: 1

Views

Author

Tom Edgar, Mar 03 2015

Keywords

Comments

To compute a(n) replace even-indexed primes in the prime factorization of n by 1.
a(p) = p if p is in A031368.
a(p) = 1 if p is in A031215.

Examples

			Since 10 = 2*5, 2 = prime(1), and 5 = prime(3), a(10) = 2*5 = 10.
Since 9 = 3^2 and 3 is an even-indexed prime, 3 = prime(2), then a(9) = 1^2 = 1.
Since 30 = 2*3*5, 2 = prime(1), 3 = prime(2), and 5 = prime(3), we see that a(30) = 2*1*5 = 10.
		

Crossrefs

First 28 terms are the same as A343430.

Programs

  • Haskell
    a247503 = product . filter (odd . a049084) . a027746_row
    -- Reinhard Zumkeller, Mar 06 2015
    
  • Mathematica
    f[n_] := Block[{a, g, pf = FactorInteger@ n}, a = PrimePi[First /@ pf]; g[x_] := If[EvenQ@ x, 1, Prime@ x]; Times @@ Power @@@ Transpose@ {g /@ a, Last /@ pf}]; Array[f, 120] (* Michael De Vlieger, Mar 03 2015 *)
    Array[Times @@ (FactorInteger[#] /. {p_, e_} /; e > 0 :> (p^Mod[PrimePi@ p, 2])^e) &, 76] (* Michael De Vlieger, Apr 05 2017 *)
  • PARI
    a(n) = {f = factor(n); for (i=1, #f~, f[i,2] *= (primepi(f[i,1]) % 2);); factorback(f);} \\ Michel Marcus, Mar 03 2015
    
  • Python
    from math import prod
    from sympy import factorint, primepi
    def A247503(n): return prod(p**e for p, e in factorint(n).items() if primepi(p)&1) # Chai Wah Wu, Dec 26 2022
  • Sage
    n=100; oddIndexPrimes=[primes_first_n(2*n+1)[2*i] for i in [0..n]]
    [prod([(x[0]^(x[0] in oddIndexPrimes))^x[1] for x in factor(n)]) for n in [1..n]]
    

Formula

When n = Product_{k>=1} prime(k)^r_k, a(n) = Product_{k>=1} prime(k)^(r_k*(k mod 2)).
a(n) = n/A248101(n).
a(n) = Product_{k = 1..A001222(n)} A027746(n,k) and A049084(A027746(n,k)) is odd). - Reinhard Zumkeller, Mar 06 2015

A372588 Numbers k > 1 such that (greatest binary index of k) + (greatest prime index of k) is odd.

Original entry on oeis.org

2, 6, 7, 8, 10, 11, 15, 18, 19, 21, 24, 26, 27, 28, 29, 32, 33, 34, 40, 41, 44, 45, 46, 47, 50, 51, 55, 59, 60, 62, 65, 70, 71, 72, 74, 76, 78, 79, 81, 84, 86, 87, 89, 91, 95, 96, 98, 101, 104, 105, 106, 107, 108, 111, 112, 113, 114, 116, 117, 122, 126, 128
Offset: 1

Views

Author

Gus Wiseman, May 14 2024

Keywords

Comments

A binary index of n is any position of a 1 in its reversed binary expansion. The binary indices of n are row n of A048793.
A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
The even version is A372589.

Examples

			The terms (center), their binary indices (left), and their weakly decreasing prime indices (right) begin:
        {2}   2  (1)
      {2,3}   6  (2,1)
    {1,2,3}   7  (4)
        {4}   8  (1,1,1)
      {2,4}  10  (3,1)
    {1,2,4}  11  (5)
  {1,2,3,4}  15  (3,2)
      {2,5}  18  (2,2,1)
    {1,2,5}  19  (8)
    {1,3,5}  21  (4,2)
      {4,5}  24  (2,1,1,1)
    {2,4,5}  26  (6,1)
  {1,2,4,5}  27  (2,2,2)
    {3,4,5}  28  (4,1,1)
  {1,3,4,5}  29  (10)
        {6}  32  (1,1,1,1,1)
      {1,6}  33  (5,2)
      {2,6}  34  (7,1)
      {4,6}  40  (3,1,1,1)
    {1,4,6}  41  (13)
    {3,4,6}  44  (5,1,1)
  {1,3,4,6}  45  (3,2,2)
		

Crossrefs

For sum (A372428, zeros A372427) we have A372586.
For minimum (A372437) we have A372439, complement A372440.
For length (A372441, zeros A071814) we have A372590, complement A372591.
Positions of odd terms in A372442, zeros A372436.
The complement is A372589.
For just binary indices:
- length: A000069, complement A001969
- sum: A158705, complement A158704
- minimum: A003159, complement A036554
- maximum: A053738, complement A053754
For just prime indices:
- length: A026424 (count A027193), complement A028260 (count A027187)
- sum: A300063 (count A058695), complement A300061 (count A058696)
- minimum: A340932 (count A026804), complement A340933 (count A026805)
- maximum: A244991 (count A027193), complement A244990 (count A027187)
A005408 lists odd numbers.
A019565 gives Heinz number of binary indices, adjoint A048675.
A029837 gives greatest binary index, least A001511.
A031368 lists odd-indexed primes, even A031215.
A048793 lists binary indices, length A000120, reverse A272020, sum A029931.
A061395 gives greatest prime index, least A055396.
A070939 gives length of binary expansion.
A112798 lists prime indices, length A001222, reverse A296150, sum A056239.

Programs

  • Mathematica
    Select[Range[2,100],OddQ[IntegerLength[#,2]+PrimePi[FactorInteger[#][[-1,1]]]]&]

Formula

Numbers k such that A070939(k) + A061395(k) is odd.

A005145 n copies of n-th prime.

Original entry on oeis.org

2, 3, 3, 5, 5, 5, 7, 7, 7, 7, 11, 11, 11, 11, 11, 13, 13, 13, 13, 13, 13, 17, 17, 17, 17, 17, 17, 17, 19, 19, 19, 19, 19, 19, 19, 19, 23, 23, 23, 23, 23, 23, 23, 23, 23, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 31, 31, 31, 31, 31, 31, 31, 31, 31, 31, 31
Offset: 1

Views

Author

Keywords

Comments

Seen as a triangle read by rows: T(n,k) = A000040(n), 1 <= k <= n; row sums = A033286; central terms = A031368. - Reinhard Zumkeller, Aug 05 2009
Seen as a square array read by antidiagonals, a subtable of the binary operation multiplication tables A297845, A306697 and A329329. - Peter Munn, Jan 15 2020

Examples

			Triangle begins:
  2;
  3, 3;
  5, 5, 5;
  7, 7, 7, 7;
  ...
		

References

  • Douglas Hofstadter, "Fluid Concepts and Creative Analogies: Computer Models of the Fundamental Mechanisms of Thought", Basic Books, 1995.

Crossrefs

Sequences with similar definitions: A002024, A175944.
Cf. A000040 (range of values), A003961, A031368 (main diagonal), A033286 (row sums), A097906.
Subtable of A297845, A306697, A329329.

Programs

  • Haskell
    a005145 n k = a005145_tabl !! (n-1) !! (k-1)
    a005145_row n = a005145_tabl !! (n-1)
    a005145_tabl = zipWith ($) (map replicate [1..]) a000040_list
    a005145_list = concat a005145_tabl
    -- Reinhard Zumkeller, Jul 12 2014, Mar 18 2011, Oct 17 2010
    
  • Magma
    [NthPrime(Round(Sqrt(2*n))): n in [1..60]]; // Vincenzo Librandi, Jan 18 2020
    
  • Mathematica
    Table[Prime[Floor[1/2 + Sqrt[2*n]]], {n, 1, 80}] (* Joseph Biberstine (jrbibers(AT)indiana.edu), Aug 14 2006 *)
    Flatten[Table[Table[Prime[n], {n}], {n, 12}]] (* Alonso del Arte, Jan 18 2012 *)
    Table[PadRight[{},n,Prime[n]],{n,15}]//Flatten (* Harvey P. Dale, Feb 29 2024 *)
  • PARI
    a(n) = prime(round(sqrt(2*n))) \\ Charles R Greathouse IV, Oct 23 2015
    
  • Python
    from sympy import primerange
    a = []; [a.extend([pn]*n) for n, pn in enumerate(primerange(1, 32), 1)]
    print(a) # Michael S. Branicky, Jul 13 2022
    
  • Python
    from math import isqrt
    from sympy import prime
    def A005145(n): return prime(isqrt(n<<3)+1>>1) # Chai Wah Wu, Jun 08 2025

Formula

From Joseph Biberstine (jrbibers(AT)indiana.edu), Aug 14 2006: (Start)
a(n) = prime(floor(1/2 + sqrt(2*n))).
a(n) = A000040(A002024(n)). (End)
From Peter Munn, Jan 15 2020: (Start)
When viewed as a square array A(n,k), the following hold for n >= 1, k >= 1:
A(n,k) = prime(n+k-1).
A(n,1) = A(1,n) = prime(n), where prime(n) = A000040(n).
A(n+1,k) = A(n,k+1) = A003961(A(n,k)).
A(n,k) = A297845(A(n,1), A(1,k)) = A306697(A(n,1), A(1,k)) = A329329(A(n,1), A(1,k)).
(End)
Sum_{n>=1} 1/a(n)^2 = A097906. - Amiram Eldar, Aug 16 2022

A248101 Completely multiplicative with a(prime(n)) = prime(n)^((n+1) mod 2).

Original entry on oeis.org

1, 1, 3, 1, 1, 3, 7, 1, 9, 1, 1, 3, 13, 7, 3, 1, 1, 9, 19, 1, 21, 1, 1, 3, 1, 13, 27, 7, 29, 3, 1, 1, 3, 1, 7, 9, 37, 19, 39, 1, 1, 21, 43, 1, 9, 1, 1, 3, 49, 1, 3, 13, 53, 27, 1, 7, 57, 29, 1, 3, 61, 1, 63, 1, 13, 3, 1, 1, 3, 7, 71, 9, 1, 37, 3, 19, 7, 39, 79
Offset: 1

Views

Author

Tom Edgar, Mar 03 2015

Keywords

Comments

To compute a(n) replace odd-indexed primes in the prime factorization of n by 1.
a(p) = p if p is in A031215.
a(p) = 1 if p is in A031368.

Examples

			Since 10 = 2*5, 2 = prime(1), and 5 = prime(3), a(10) = 1*1 = 1.
Since 9 = 3^2 and 3 is an even-indexed prime, 3 = prime(2), then a(9) = 3^2 = 9.
Since 35 = 5*7, 5 = prime(3), and 7 = prime(4), we see that a(35) = 1*7 = 7.
		

Crossrefs

Programs

  • Haskell
    a248101 = product . filter (even . a049084) . a027746_row
    -- Reinhard Zumkeller, Mar 06 2015
  • Mathematica
    f[n_] := Block[{a, g, pf = FactorInteger@ n}, a = PrimePi[First /@ pf]; g[x_] := If[Or[OddQ@ x, x == 0], 1, Prime@ x]; Times @@ Power @@@ Transpose@ {g /@ a, Last /@ pf}]; Array[f, 120] (* Michael De Vlieger, Mar 03 2015 *)
    Array[Times @@ (FactorInteger[#] /. {p_, e_} /; e > 0 :> (p^Mod[PrimePi@ p + 1, 2])^e) &, 79] (* Michael De Vlieger, Apr 05 2017 *)
  • PARI
    a(n) = {f = factor(n); for (i=1, #f~, f[i,2] *= (primepi(f[i,1])+1) % 2;); factorback(f);} \\ Michel Marcus, Mar 03 2015
    
  • Sage
    n=100; evenIndexPrimes=[primes_first_n(2*n+2)[2*i+1] for i in [0..n]]
    [prod([(x[0]^(x[0] in evenIndexPrimes))^x[1] for x in factor(n)]) for n in [1..n]]
    

Formula

When n = Product_{k>=1} prime(k)^r_k, a(n) = Product_{k>=1} prime(k)^(r_k*((k+1) mod 2)).
a(n) = n / A247503(n).
a(n) = Product(A027746(n,k): k = 1 .. A001222(n) and A049084(A027746(n,k)) is even). - Reinhard Zumkeller, Mar 06 2015

A332821 One part of a 3-way classification of the positive integers. Numbers n for which A048675(n) == 1 (mod 3).

Original entry on oeis.org

2, 5, 9, 11, 12, 16, 17, 21, 23, 28, 30, 31, 39, 40, 41, 47, 49, 52, 54, 57, 59, 66, 67, 70, 72, 73, 75, 76, 83, 87, 88, 91, 96, 97, 100, 102, 103, 109, 111, 116, 126, 127, 128, 129, 130, 133, 135, 136, 137, 138, 148, 149, 154, 157, 159, 165, 167, 168, 169, 172, 175, 179, 180, 183, 184, 186, 190, 191, 197, 203, 211, 212
Offset: 1

Views

Author

Antti Karttunen and Peter Munn, Feb 25 2020

Keywords

Comments

The positive integers are partitioned between A332820, this sequence and A332822.
For each prime p, the terms include exactly one of p and p^2. The primes alternate between this sequence and A332822. This sequence has the primes with odd indexes, those in A031368.
The terms are the even numbers in A332822 halved. The terms are also the numbers m such that 5m is in A332822, and so on for alternate primes: 11, 17, 23 etc. Likewise, the terms are the numbers m such that 3m is in A332820, and so on for alternate primes: 7, 13, 19 etc.
The numbers that are half of the even terms of this sequence are in A332820, which consists exactly of those numbers. The numbers that are one third of the terms that are multiples of 3 are in A332822, which consists exactly of those numbers. For larger primes, an alternating pattern applies as described in the previous paragraph.
If we take each odd term of this sequence and replace each prime in its factorization by the next smaller prime, the resulting number is in A332822, which consists entirely of those numbers.
The product of any 2 terms of this sequence is in A332822, the product of any 3 terms is in A332820, and the product of a term of A332820 and a term of this sequence is in this sequence. So if a number k is present, k^2 is in A332822, k^3 is in A332820, and k^4 is in this sequence.
If k is an even number, exactly one of {k/2, k, 2k} is in the sequence (cf. A191257 / A067368 / A213258); and generally if k is a multiple of a prime p, exactly one of {k/p, k, k*p} is in the sequence.

Crossrefs

Positions of ones in A332823; equivalently, numbers in row 3k+1 of A277905 for some k >= 0.
Subsequences: intersection of A026478 and A066208, A031368 (prime terms), A033431\{0}, A052934\{1}, A069486, A099800, A167747\{1}, A244725\{0}, A244728\{0}, A338911 (semiprime terms).

Programs

  • Mathematica
    Select[Range@ 212, Mod[Total@ #, 3] == 1 &@ Map[#[[-1]]*2^(PrimePi@ #[[1]] - 1) &, FactorInteger[#]] &] (* Michael De Vlieger, Mar 15 2020 *)
  • PARI
    isA332821(n) =  { my(f = factor(n)); (1==((sum(k=1, #f~, f[k, 2]*2^primepi(f[k, 1]))/2)%3)); };

Formula

{a(n) : n >= 1} = {2 * A332820(k) : k >= 1} U {A003961(A332822(k)) : k >= 1}.
{a(n) : n >= 1} = {A332822(k)^2 : k >= 1} U {A331590(2, A332820(k)) : k >= 1}.

A352142 Numbers whose prime factorization has all odd indices and all odd exponents.

Original entry on oeis.org

1, 2, 5, 8, 10, 11, 17, 22, 23, 31, 32, 34, 40, 41, 46, 47, 55, 59, 62, 67, 73, 82, 83, 85, 88, 94, 97, 103, 109, 110, 115, 118, 125, 127, 128, 134, 136, 137, 146, 149, 155, 157, 160, 166, 167, 170, 179, 184, 187, 191, 194, 197, 205, 206, 211, 218, 227, 230
Offset: 1

Views

Author

Gus Wiseman, Mar 18 2022

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798, sum A056239, length A001222.
A number's prime signature is the sequence of positive exponents in its prime factorization, which is row n of A124010, length A001221, sum A001222.
These are the Heinz numbers of integer partitions with all odd parts and all odd multiplicities, counted by A117958.

Examples

			The terms together with their prime indices begin:
   1 = 1
   2 = prime(1)
   5 = prime(3)
   8 = prime(1)^3
  10 = prime(1) prime(3)
  11 = prime(5)
  17 = prime(7)
  22 = prime(1) prime(5)
  23 = prime(9)
  31 = prime(11)
  32 = prime(1)^5
  34 = prime(1) prime(7)
  40 = prime(1)^3 prime(3)
		

Crossrefs

The restriction to primes is A031368.
The first condition alone is A066208, counted by A000009.
These partitions are counted by A117958.
The squarefree case is A258116, even A258117.
The second condition alone is A268335, counted by A055922.
The even-even version is A352141 counted by A035444.
A000290 = exponents all even, counted by A035363.
A056166 = exponents all prime, counted by A055923.
A066207 = indices all even, counted by A035363 (complement A086543).
A109297 = same indices as exponents, counted by A114640.
A112798 lists prime indices, reverse A296150, length A001222, sum A056239.
A124010 gives prime signature, sorted A118914, length A001221, sum A001222.
A162641 counts even prime exponents, odd A162642.
A257991 counts odd prime indices, even A257992.
A325131 = disjoint indices from exponents, counted by A114639.
A346068 = indices and exponents all prime, counted by A351982.
A351979 = odd indices with even exponents, counted by A035457.
A352140 = even indices with odd exponents, counted by A055922 aerated.
A352143 = odd indices with odd conjugate indices, counted by A053253 aerated.

Programs

  • Mathematica
    Select[Range[100],#==1||And@@OddQ/@PrimePi/@First/@FactorInteger[#]&&And@@OddQ/@Last/@FactorInteger[#]&]
  • Python
    from itertools import count, islice
    from sympy import primepi, factorint
    def A352142_gen(startvalue=1): # generator of terms >= startvalue
        return filter(lambda k:all(map(lambda x:x[1]%2 and primepi(x[0])%2, factorint(k).items())),count(max(startvalue,1)))
    A352142_list = list(islice(A352142_gen(),30)) # Chai Wah Wu, Mar 18 2022

Formula

Intersection of A066208 and A268335.
A257991(a(n)) = A001222(a(n)).
A162642(a(n)) = A001221(a(n)).
A257992(a(n)) = A162641(a(n)) = 0.

A372586 Numbers k such that (sum of binary indices of k) + (sum of prime indices of k) is odd.

Original entry on oeis.org

1, 2, 3, 4, 5, 8, 9, 12, 15, 16, 17, 20, 21, 29, 32, 36, 42, 43, 45, 46, 47, 48, 51, 53, 54, 55, 59, 60, 61, 63, 64, 65, 66, 67, 68, 71, 73, 78, 79, 80, 81, 84, 89, 91, 93, 94, 95, 97, 99, 101, 105, 110, 111, 113, 114, 115, 116, 118, 119, 121, 122, 125, 127
Offset: 1

Views

Author

Gus Wiseman, May 14 2024

Keywords

Comments

A binary index of n is any position of a 1 in its reversed binary expansion. The binary indices of n are row n of A048793.
A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
The even version is A372587.

Examples

			The terms (center), their binary indices (left), and their weakly decreasing prime indices (right) begin:
            {1}   1  ()
            {2}   2  (1)
          {1,2}   3  (2)
            {3}   4  (1,1)
          {1,3}   5  (3)
            {4}   8  (1,1,1)
          {1,4}   9  (2,2)
          {3,4}  12  (2,1,1)
      {1,2,3,4}  15  (3,2)
            {5}  16  (1,1,1,1)
          {1,5}  17  (7)
          {3,5}  20  (3,1,1)
        {1,3,5}  21  (4,2)
      {1,3,4,5}  29  (10)
            {6}  32  (1,1,1,1,1)
          {3,6}  36  (2,2,1,1)
        {2,4,6}  42  (4,2,1)
      {1,2,4,6}  43  (14)
      {1,3,4,6}  45  (3,2,2)
      {2,3,4,6}  46  (9,1)
    {1,2,3,4,6}  47  (15)
          {5,6}  48  (2,1,1,1,1)
		

Crossrefs

Positions of odd terms in A372428, zeros A372427.
For minimum (A372437) we have A372439, complement A372440.
For length (A372441, zeros A071814) we have A372590, complement A372591.
For maximum (A372442, zeros A372436) we have A372588, complement A372589.
The complement is A372587.
For just binary indices:
- length: A000069, complement A001969
- sum: A158705, complement A158704
- minimum: A003159, complement A036554
- maximum: A053738, complement A053754
For just prime indices:
- length: A026424 (count A027193), complement A028260 (count A027187)
- sum: A300063 (count A058695), complement A300061 (count A058696)
- minimum: A340932 (count A026804), complement A340933 (count A026805)
- maximum: A244991 (count A027193), complement A244990 (count A027187)
A005408 lists odd numbers.
A019565 gives Heinz number of binary indices, adjoint A048675.
A029837 gives greatest binary index, least A001511.
A031368 lists odd-indexed primes, even A031215.
A048793 lists binary indices, length A000120, reverse A272020, sum A029931.
A061395 gives greatest prime index, least A055396.
A070939 gives length of binary expansion.
A112798 lists prime indices, length A001222, reverse A296150, sum A056239.

Programs

  • Mathematica
    prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    bix[n_]:=Join@@Position[Reverse[IntegerDigits[n,2]],1];
    Select[Range[100],OddQ[Total[bix[#]]+Total[prix[#]]]&]

Formula

Numbers k such that A029931(k) + A056239(k) is odd.
Previous Showing 11-20 of 53 results. Next