cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-40 of 49 results. Next

A352069 Expansion of e.g.f. 1 / (1 + log(1 - 3*x) / 3).

Original entry on oeis.org

1, 1, 5, 42, 492, 7374, 134478, 2887128, 71281656, 1988802720, 61860849552, 2121993490176, 79566300371952, 3237181141173264, 142019158472311248, 6682603650677875584, 335698708873243355136, 17930674324049810882688, 1014685181110897126616448, 60641642160287342580586752
Offset: 0

Views

Author

Ilya Gutkovskiy, Mar 02 2022

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 19; CoefficientList[Series[1/(1 + Log[1 - 3 x]/3), {x, 0, nmax}], x] Range[0, nmax]!
    Table[Sum[StirlingS1[n, k] k! (-3)^(n - k), {k, 0, n}], {n, 0, 19}]
  • PARI
    my(x='x+O('x^25)); Vec(serlaplace(1/(1+log(1-3*x)/3))) \\ Michel Marcus, Mar 02 2022

Formula

a(n) = Sum_{k=0..n} Stirling1(n,k) * k! * (-3)^(n-k).
a(0) = 1; a(n) = Sum_{k=1..n} binomial(n,k) * (k-1)! * 3^(k-1) * a(n-k).
a(n) ~ n! * 3^(n+1) * exp(3*n) / (exp(3) - 1)^(n+1). - Vaclav Kotesovec, Mar 03 2022

A144756 Partial products of successive terms of A017101; a(0)=1 .

Original entry on oeis.org

1, 3, 33, 627, 16929, 592515, 25478145, 1299385395, 76663738305, 5136470466435, 385235284982625, 31974528653557875, 2909682107473766625, 288058528639902895875, 30822262564469609858625, 3544560194914005133741875, 435980903974422631450250625, 57113498420649364719982831875
Offset: 0

Views

Author

Philippe Deléham, Sep 20 2008

Keywords

Examples

			a(0)=1, a(1)=3, a(2)=3*11=33, a(3)=3*11*19=627, a(4)=3*11*19*27=16929, ...
		

Crossrefs

Programs

  • Mathematica
    Join[{1},FoldList[Times,8Range[0,20]+3]] (* Harvey P. Dale, Aug 11 2019 *)

Formula

a(n) = Sum_{k=0..n} A132393(n,k)*3^k*8^(n-k).
a(n) = (-5)^n*sum_{k=0..n} (8/5)^k*s(n+1,n+1-k), where s(n,k) are the Stirling numbers of the first kind, A048994. - Mircea Merca, May 03 2012
G.f.: 2/G(0), where G(k)= 1 + 1/(1 - 2*x*(8*k+3)/(2*x*(8*k+3) - 1 + 16*x*(k+1)/G(k+1))); (continued fraction). - Sergei N. Gladkovskii, May 30 2013
a(n) +(-8*n+5)*a(n-1)=0. - R. J. Mathar, Sep 04 2016
From Ilya Gutkovskiy, Mar 23 2017: (Start)
E.g.f.: 1/(1 - 8*x)^(3/8).
a(n) ~ sqrt(2*Pi)*8^n*n^n/(exp(n)*n^(1/8)*Gamma(3/8)). (End)
Sum_{n>=0} 1/a(n) = 1 + (e/8^5)^(1/8)*(Gamma(3/8) - Gamma(3/8, 1/8)). - Amiram Eldar, Dec 20 2022

Extensions

a(11) corrected by Ilya Gutkovskiy, Mar 23 2017

A145448 a(n) = 12^n*n!.

Original entry on oeis.org

1, 12, 288, 10368, 497664, 29859840, 2149908480, 180592312320, 17336861982720, 1872381094133760, 224685731296051200, 29658516531078758400, 4270826380475341209600, 666248915354153228697600
Offset: 0

Views

Author

Keywords

Comments

12-factorial numbers.
Let G(z) = Gamma(z)/(sqrt(2*Pi)*z^(z-1/2)*exp(-z)). For any z > 0 the bounds 1 < G(z) < exp(1/(12*z)) = 1 + 1/(12*z) + 1/(288*z^2) + 1/(10368*z^3) + ... hold. G. Nemes improved the upper bound to 1 + 1/(12*z) + 1/(288*z^2) which gives a simple estimate for the Gamma function on the positive real line. - Peter Luschny, Sep 24 2016

Crossrefs

Programs

  • Magma
    [(Factorial(n)*12^n): n in [0..20]]; // Vincenzo Librandi, Oct 28 2011
    
  • Mathematica
    Table[12^n*n!, {n,0,30}] (* G. C. Greubel, Mar 24 2022 *)
  • Sage
    [12^n*factorial(n) for n in (0..30)] # G. C. Greubel, Mar 24 2022

Formula

E.g.f.: 1/(1-12*x). - Philippe Deléham, Oct 28 2011
G.f.: 1/(1 - 12*x/(1 - 12*x/(1 - 24*x/(1 - 24*x/(1 - 36*x/(1 - 36*x/(1 - ...))))))), a continued fraction. - Ilya Gutkovskiy, Aug 09 2017
From Amiram Eldar, Jun 25 2020: (Start)
Sum_{n>=0} 1/a(n) = e^(1/12).
Sum_{n>=0} (-1)^n/a(n) = e^(-1/12). (End)

Extensions

a(0)=1 prepended by Richard V. Scholtz, III, Mar 11 2009
a(10)-a(13) corrected by Vincenzo Librandi, Oct 28 2011

A203412 Triangle read by rows, a(n,k), n>=k>=1, which represent the s=3, h=1 case of a two-parameter generalization of Stirling numbers arising in conjunction with normal ordering.

Original entry on oeis.org

1, 1, 1, 4, 3, 1, 28, 19, 6, 1, 280, 180, 55, 10, 1, 3640, 2260, 675, 125, 15, 1, 58240, 35280, 10360, 1925, 245, 21, 1, 1106560, 658000, 190680, 35385, 4620, 434, 28, 1, 24344320, 14266560, 4090240, 756840, 100065, 9828, 714, 36, 1
Offset: 1

Views

Author

Mark Shattuck, Jan 01 2012

Keywords

Comments

Also the Bell transform of the triple factorial numbers A007559 which adds a first column (1,0,0 ...) on the left side of the triangle. For the definition of the Bell transform see A264428. See A051141 for the triple factorial numbers A032031 and A004747 for the triple factorial numbers A008544 as well as A039683 and A132062 for the case of double factorial numbers. - Peter Luschny, Dec 23 2015

Examples

			Triangle starts:
[    1]
[    1,     1]
[    4,     3,     1]
[   28,    19,     6,    1]
[  280,   180,    55,   10,   1]
[ 3640,  2260,   675,  125,  15,  1]
[58240, 35280, 10360, 1925, 245, 21, 1]
		

Crossrefs

Programs

  • Maple
    A203412 := (n,k) -> (n!*3^n)/(k!*2^k)*add((-1)^j*binomial(k,j)*binomial(n-2*j/3-1, n), j=0..k): seq(seq(A203412(n,k),k=1..n),n=1..9); # Peter Luschny, Dec 21 2015
  • Mathematica
    Table[(n! 3^n)/(k! 2^k) Sum[ (-1)^j Binomial[k, j] Binomial[n - 2 j/3 - 1, n], {j, 0, k}], {n, 9}, {k, n}] // Flatten (* Michael De Vlieger, Dec 23 2015 *)
  • Sage
    # uses[bell_transform from A264428]
    triplefactorial = lambda n: prod(3*k + 1 for k in (0..n-1))
    def A203412_row(n):
        trifact = [triplefactorial(k) for k in (0..n)]
        return bell_transform(n, trifact)
    [A203412_row(n) for n in (0..8)] # Peter Luschny, Dec 21 2015

Formula

(1) Is given by the recurrence relation
a(n+1,k) = a(n,k-1)+(3*n-2*k)*a(n,k) if n>=0 and k>=1, along with the initial values a(n,0) = delta_{n,0} and a(0,k) = delta_{0,k} for all n,k>=0.
(2) Is given explicitly by
a(n,k) = (n!*3^n)/(k!*2^k)*Sum{j=0..k} (-1)^j*C(k,j)*C(n-2*j/3-1,n) for all n>=k>=1.
a(n,1) = A007559(n-1). - Peter Luschny, Dec 21 2015

A304117 If n = Product (p_j^k_j) then a(n) = Product (pi(p_j)*k_j), where pi() = A000720.

Original entry on oeis.org

1, 1, 2, 2, 3, 2, 4, 3, 4, 3, 5, 4, 6, 4, 6, 4, 7, 4, 8, 6, 8, 5, 9, 6, 6, 6, 6, 8, 10, 6, 11, 5, 10, 7, 12, 8, 12, 8, 12, 9, 13, 8, 14, 10, 12, 9, 15, 8, 8, 6, 14, 12, 16, 6, 15, 12, 16, 10, 17, 12, 18, 11, 16, 6, 18, 10, 19, 14, 18, 12, 20, 12, 21, 12, 12, 16, 20, 12, 22, 12
Offset: 1

Views

Author

Ilya Gutkovskiy, May 06 2018

Keywords

Examples

			a(36) = 8 because 36 = 2^2*3^2 = prime(1)^2*prime(2)^2 and 1*2*2*2 = 8.
		

Crossrefs

Programs

  • Mathematica
    a[n_] := Times @@ (PrimePi[#[[1]]] #[[2]] & /@ FactorInteger[n]); a[1] = 1; Table[a[n], {n, 1, 80}]
  • PARI
    a(n) = my(f=factor(n)); for (k=1, #f~, f[k,1] = primepi(f[k,1])*f[k,2]; f[k, 2] = 1); factorback(f); \\ Michel Marcus, May 06 2018

Formula

a(n) = A005361(n)*A156061(n).
a(p^k) = A000720(p)*k where p is a prime.
a(A002110(m)^k) = k^m*m!.
As an example:
a(A000040(k)) = k.
a(A006450(k)) = A000040(k).
a(A001248(k)) = a(A031215(k)) = A005843(k).
a(A030078(k)) = a(A031336(k)) = A008585(k)
a(A061742(k)) = A000165(k).
a(A115964(k)) = A032031(k).
a(A002110(k)) = A000142(k).
a(A080696(k)) = A002110(k).

A091535 First column (k=2) of array A091534 ((5,2)-Stirling2).

Original entry on oeis.org

1, 20, 1120, 123200, 22422400, 6098892800, 2317579264000, 1172695107584000, 762251819929600000, 618948477782835200000, 613996889960572518400000, 730656299053081296896000000, 1027302756468632303435776000000, 1684776520608556977634672640000000
Offset: 1

Views

Author

Wolfdieter Lang, Jan 23 2004

Keywords

Comments

The scaled sequence (2/(3n-1)!!!)*a(n) = (3*n-2)!!! = A007559(n), n>=1.

Crossrefs

Third column of array A091752 ((-1, 2)-Stirling2).

Programs

  • Maple
    a := n -> 9^n*GAMMA(n+1/3)*GAMMA(n+2/3)*sqrt(3)/(4*Pi);
    seq(a(n), n=1..16); # Peter Luschny, Sep 17 2014
  • Mathematica
    a[n_] := (3*n-1)!/(2!*3^(n-1)*(n-1)!); Array[a, 15] (* Amiram Eldar, Sep 01 2025 *)

Formula

a(n) = (3*n-1)!/(2!*3^(n-(2-1))*(n-1)!) = ((3*n-1)!/2)/A032031(n-1).
a(n) = A091534(n, 2), n>=1.
E.g.f.: (hypergeom([1/3, 2/3, 1], [], 9*x)-1)/2.
a(n) = 9^n*Gamma(n+1/3)*Gamma(n+2/3)*sqrt(3)/(4*Pi). - Peter Luschny, Sep 17 2014
a(n) ~ (sqrt(3)/2) * (3*n/e)^(2*n). - Amiram Eldar, Sep 01 2025

A091539 Second column (k=3) of array A091534 ((5,2)-Stirling2) divided by 10.

Original entry on oeis.org

1, 104, 16192, 3745280, 1222291840, 537758144000, 307503360102400, 221965373351321600, 197530935371241472000, 212553938009841139712000, 272115940122123843665920000, 408828811133790954169303040000, 712427095375430807967713198080000, 1425431682224708301179257251430400000
Offset: 2

Views

Author

Wolfdieter Lang, Feb 13 2004

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := 3^(2*n) * Pochhammer[2/3, n] * (n! - 3 * Pochhammer[1/3, n])/(3!*10); Array[a, 20, 2] (* Amiram Eldar, Aug 30 2025 *)

Formula

a(n) = A091534(n, 3)/10, n >= 2.
a(n) = Product_{j=0..n-1} (3*j + 2)*(Product_{j=0..n-1} (3*(j+1)) - 3*Product_{j=0..n-1} (3*j + 1))/(3!*10). From eq. (12) of the Blasiak et al. reference for r=5, s=2 and k=3.
a(n) = (3^(2*n))*risefac(2/3, n)*(n!-3*risefac(1/3, n))/(3!*10), with risefac(x, n) = Pochhammer(x, n).
a(n) = (fac3(3*n-1)/10)*(fac3(3*n) - 3*fac3(3*n-2))/3!, with fac3(3*n) = A032031(n) = n!*3^n, fac3(3*n-1) = A008544(n) and fac3(3*n-2) = A007559(n) (triple factorials: fac3(n) = A007661(n)).
E.g.f.: (hypergeom([2/3, 1], [], 9*x)-3*hypergeom([1/3, 2/3], [], 9*x)+2)/(3!*10).
a(n) ~ Pi * 3^(2*n) * n^(2*n + 2/3) / (30 * Gamma(2/3) * exp(2*n)). - Amiram Eldar, Aug 30 2025

A091540 Rescaled second column A091539 of array A091534 ((5,2)-Stirling2).

Original entry on oeis.org

1, 13, 184, 3040, 58360, 1283800, 31917760, 886123840, 27192323200, 914387689600, 33446228569600, 1322364153510400, 56203860301388800, 2555756347720576000, 123819357959385088000, 6367367706293321728000
Offset: 2

Views

Author

Wolfdieter Lang, Feb 13 2004

Keywords

Comments

A certain difference of two triple factorial sequences.
If offset 0: exponential (also called binomial) convolution of A091541 and A051606.

Crossrefs

Cf. A091541.

Programs

  • Magma
    m:=30; R:=PowerSeriesRing(Rationals(), m); b:=Coefficients(R!( (3-2*(1-3*x)^(2/3))/(1-3*x)^3 )); [Factorial(n-1)*b[n]: n in [1..m]]; // G. C. Greubel, Aug 15 2018
  • Mathematica
    Drop[With[{nmax = 50}, CoefficientList[Series[(1 - 2*x - (1 - 3*x)^(2/3))/(2*(1 - 3*x)), {x, 0, nmax}], x]*Range[0, nmax]!],2] (* G. C. Greubel, Aug 15 2018 *)
  • PARI
    x='x+O('x^30); Vec(serlaplace((1 - 2*x - (1 - 3*x)^(2/3))/(2*(1 - 3*x)))) \\ G. C. Greubel, Aug 15 2018
    

Formula

a(n)= (5*2/fac3(3*n-1))*A091539(n), n>=2, with fac3(3*n-1) := A008544(n) (triple factorials).
E.g.f.: (1-2*x-(1-3*x)^(2/3))/(2*(1-3*x))= (1/2-x+int((1-3*x)^(-1/3), x))/(1-3*x).
E.g.f. with offset 0: (3-2*(1-3*x)^(2/3))/(1-3*x)^3.
a(n)=(fac3(3*n) - 3*fac3(3*n-2))/3! with fac3(3*n) := A032031(n)= n!*3^n and fac3(3*n-2) := A007559(n).
a(n) ~ 3^(n-1) * n! / 2. - Vaclav Kotesovec, Aug 16 2018

A131182 Table T(n,k) = n!*k^n, read by upwards antidiagonals.

Original entry on oeis.org

1, 0, 1, 0, 1, 1, 0, 2, 2, 1, 0, 6, 8, 3, 1, 0, 24, 48, 18, 4, 1, 0, 120, 384, 162, 32, 5, 1, 0, 720, 3840, 1944, 384, 50, 6, 1, 0, 5040, 46080, 29160, 6144, 750, 72, 7, 1, 0, 40320, 645120, 524880, 122880, 15000, 1296, 98, 8, 1, 0, 362880, 10321920, 11022480, 2949120, 375000, 31104, 2058, 128, 9, 1
Offset: 0

Views

Author

Philippe Deléham, Sep 25 2007

Keywords

Comments

For k>0, T(n,k) is the n-th moment of the exponential distribution with mean = k. - Geoffrey Critzer, Jan 06 2019
T(n,k) is the minimum value of Product_{i=1..n} Sum_{j=1..k} r_j[i] where each r_j is a permutation of {1..n}. For the maximum value, see A331988. - Chai Wah Wu, Sep 01 2022

Examples

			The (inverted) table begins:
k=0: 1, 0,   0,    0,      0,       0, ... (A000007)
k=1: 1, 1,   2,    6,     24,     120, ... (A000142)
k=2: 1, 2,   8,   48,    384,    3840, ... (A000165)
k=3: 1, 3,  18,  162,   1944,   29160, ... (A032031)
k=4: 1, 4,  32,  384,   6144,  122880, ... (A047053)
k=5: 1, 5,  50,  750,  15000,  375000, ... (A052562)
k=6: 1, 6,  72, 1296,  31104,  933120, ... (A047058)
k=7: 1, 7,  98, 2058,  57624, 2016840, ... (A051188)
k=8: 1, 8, 128, 3072,  98304, 3932160, ... (A051189)
k=9: 1, 9, 162, 4374, 157464, 7085880, ... (A051232)
Main diagonal is 1, 1, 8, 162, 6144, 375000, ... (A061711).
		

Crossrefs

Main diagonal gives A061711.

Programs

  • Maple
    T:= (n,k)-> n!*k^n:
    seq(seq(T(d-k, k), k=0..d), d=0..12);  # Alois P. Heinz, Jan 06 2019
  • Python
    from math import factorial
    def A131182_T(n, k): # compute T(n, k)
        return factorial(n)*k**n # Chai Wah Wu, Sep 01 2022

Formula

From Ilya Gutkovskiy, Aug 11 2017: (Start)
G.f. of column k: 1/(1 - k*x/(1 - k*x/(1 - 2*k*x/(1 - 2*k*x/(1 - 3*k*x/(1 - 3*k*x/(1 - ...))))))), a continued fraction.
E.g.f. of column k: 1/(1 - k*x). (End)

A153271 Triangle T(n, k) = Product_{j=0..k} (j*n + prime(m)), with T(n, 0) = prime(m) and m = 3, read by rows.

Original entry on oeis.org

5, 5, 30, 5, 35, 315, 5, 40, 440, 6160, 5, 45, 585, 9945, 208845, 5, 50, 750, 15000, 375000, 11250000, 5, 55, 935, 21505, 623645, 21827575, 894930575, 5, 60, 1140, 29640, 978120, 39124800, 1838865600, 99298742400, 5, 65, 1365, 39585, 1464645, 65909025, 3493178325, 213083877825, 14702787569925
Offset: 0

Views

Author

Roger L. Bagula, Dec 22 2008

Keywords

Comments

Row sums are {5, 35, 355, 6645, 219425, 11640805, 917404295, 101177741765, 14919432040765, 2839006665525525, 677815000136926955, ...}.

Examples

			Triangle begins as:
  5;
  5, 30;
  5, 35, 315;
  5, 40, 440,  6160;
  5, 45, 585,  9945, 208845;
  5, 50, 750, 15000, 375000, 11250000;
  5, 55, 935, 21505, 623645, 21827575, 894930575;
		

Crossrefs

Cf. A153271 (m=2), this sequence (m=3), A153272 (m=4).
Sequences related to m values:

Programs

  • Magma
    m:=3;
    function T(n,k)
      if k eq 0 then return NthPrime(m);
      else return (&*[j*n + NthPrime(m): j in [0..k]]);
      end if; return T; end function;
    [T(n,k): k in [0..n], n in [0..10]]; // G. C. Greubel, Dec 03 2019
    
  • Maple
    m:=3; seq(seq(`if`(k=0, ithprime(m), mul(j*n + ithprime(m), j=0..k)), k=0..n), n=0..10); # G. C. Greubel, Dec 03 2019
  • Mathematica
    T[n_, k_, m_]:= If[k==0, Prime[m], Product[j*n + Prime[m], {j,0,k}]];
    Table[T[n,k,3], {n,0,10}, {k,0,n}]//Flatten
  • PARI
    T(n,k) = my(m=3); if(k==0, prime(m), prod(j=0,k, j*n + prime(m)) ); \\ G. C. Greubel, Dec 03 2019
    
  • Sage
    def T(n, k):
        m=3
        if (k==0): return nth_prime(m)
        else: return product(j*n + nth_prime(m) for j in (0..k))
    [[T(n, k) for k in (0..n)] for n in (0..10)] # G. C. Greubel, Dec 03 2019

Formula

T(n, k) = Product_{j=0..k} (j*n + prime(m)), with T(n, 0) = prime(m) and m = 3.

Extensions

Edited by G. C. Greubel, Dec 03 2019
Previous Showing 31-40 of 49 results. Next