cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 41-49 of 49 results.

A331817 a(n) = (n!)^2 * Sum_{k=0..n} (2*k)! / (2^k * (k!)^3 * (n - k)!).

Original entry on oeis.org

1, 2, 9, 66, 681, 9090, 148905, 2889810, 64805265, 1648535490, 46896669225, 1475099460450, 50831084252025, 1904311245686850, 77061447551313225, 3349828945512299250, 155672917524626126625, 7701743926471878533250, 404153655359180645543625
Offset: 0

Views

Author

Ilya Gutkovskiy, Jan 27 2020

Keywords

Crossrefs

Programs

  • Magma
    [(Factorial(n))^2*&+[Factorial(2*k)/(2^k*(Factorial(k))^3*Factorial(n-k)):k in [0..n]]:n in [0..18]]; // Marius A. Burtea, Jan 27 2020
  • Maple
    f:= gfun:-rectoproc({a(n + 2) = 2*(3 + 2*n)*a(n + 1) - 3*(n + 1)^2*a(n), a(0)=1, a(1)=2},a(n), remember):
    map(f, [$0..30]); # Robert Israel, Feb 17 2020
  • Mathematica
    Table[n!^2 Sum[(2 k)!/(2^k k!^3 (n - k)!), {k, 0, n}], {n, 0, 18}]
    nmax = 18; CoefficientList[Series[1/Sqrt[1 - 4 x + 3 x^2], {x, 0, nmax}], x] Range[0, nmax]!
    Table[n! Hypergeometric2F1[1/2, -n, 1, -2], {n, 0, 18}]
  • PARI
    seq(n) = {Vec(serlaplace(1/(sqrt(1 - 4*x + 3*x^2 + O(x*x^n)))))} \\ Andrew Howroyd, Jan 27 2020
    

Formula

E.g.f.: 1 / sqrt(1 - 4*x + 3*x^2).
a(n) = Sum_{k=0..n} binomial(n,k)^2 * (2*k - 1)!! * (n - k)!.
a(n) = n! * 2F1(1/2, -n; 1; -2).
a(n) ~ 3^(n + 1/2) * n^n / exp(n). - Vaclav Kotesovec, Jan 28 2020
D-finite with recurrence a(n + 2) = 2*(3 + 2*n)*a(n + 1) - 3*(n + 1)^2*a(n). - Robert Israel, Feb 17 2020

A108694 Triangle T(n,k), 0<=k<=n, read by rows, given by [1, 2, 2, 4, 3, 6, 4, 8, 5, 10, 6, 12, . . . ] DELTA [2, 1, 4, 2, 6, 3, 8, 4, 10, 5, 12, 6, . . . ] where DELTA is the operator defined in A084938.

Original entry on oeis.org

1, 1, 2, 3, 9, 6, 13, 54, 69, 26, 75, 399, 747, 573, 150, 541, 3508, 8638, 9998, 5393, 1082, 4683, 35817, 109248, 169038, 139143, 57585, 9366, 47293, 416762, 1515531, 2935222, 3256907, 2064534, 691645, 94586
Offset: 0

Views

Author

Philippe Deléham, Jun 18 2005

Keywords

Comments

Related to preferential arrangements of n elements (A000670) and necklaces of sets of labeled beads (A000629).

Examples

			1; 1, 2; 3, 9, 6; 13, 54, 69, 26; 75, 399, 747, 573, 150; ...
		

Crossrefs

Formula

Sum_{ k>=0 } T(n, k) = n!*3^n = A032031(n).
T(n, 0) = A000670(n); T(n, n) = A000629(n).

A153270 Triangle T(n, k) = Product_{j=0..k} (j*n + prime(m)), with T(n, 0) = prime(m) and m = 2, read by rows.

Original entry on oeis.org

3, 3, 12, 3, 15, 105, 3, 18, 162, 1944, 3, 21, 231, 3465, 65835, 3, 24, 312, 5616, 129168, 3616704, 3, 27, 405, 8505, 229635, 7577955, 295540245, 3, 30, 510, 12240, 379440, 14418720, 648842400, 33739804800, 3, 33, 627, 16929, 592515, 25478145, 1299385395, 76663738305, 5136470466435
Offset: 0

Views

Author

Roger L. Bagula, Dec 22 2008

Keywords

Comments

Row sums are {3, 15, 123, 2127, 69555, 3751827, 303356775, 34403458143, 5214459678387, 1018396843935195, 249088654250968899, ...}.

Examples

			Triangle begins as:
  3;
  3, 12;
  3, 15, 105;
  3, 18, 162,  1944;
  3, 21, 231,  3465,  65835;
  3, 24, 312,  5616, 129168,  3616704;
  3, 27, 405,  8505, 229635,  7577955, 295540245;
  3, 30, 510, 12240, 379440, 14418720, 648842400, 33739804800;
		

Crossrefs

Cf. this sequence (m=2), A153271 (m=3), A153272 (m=4).

Programs

  • Magma
    m:=2;
    function T(n,k)
      if k eq 0 then return NthPrime(m);
      else return (&*[j*n + NthPrime(m): j in [0..k]]);
      end if; return T; end function;
    [T(n,k): k in [0..n], n in [0..10]]; // G. C. Greubel, Dec 03 2019
    
  • Maple
    m:=2; seq(seq(`if`(k=0, ithprime(m), mul(j*n + ithprime(m), j=0..k)), k=0..n), n=0..10); # G. C. Greubel, Dec 03 2019
  • Mathematica
    T[n_, k_, m_]:= If[k==0, Prime[m], Product[j*n + Prime[m], {j,0,k}]];
    Table[T[n,k,2], {n,0,10}, {k,0,n}]//Flatten
  • PARI
    T(n,k) = my(m=2); if(k==0, prime(m), prod(j=0,k, j*n + prime(m)) ); \\ G. C. Greubel, Dec 03 2019
    
  • Sage
    def T(n, k):
        m=2
        if (k==0): return nth_prime(m)
        else: return product(j*n + nth_prime(m) for j in (0..k))
    [[T(n, k) for k in (0..n)] for n in (0..10)] # G. C. Greubel, Dec 03 2019

Formula

T(n, k) = Product_{j=0..k} (j*n + prime(m)), with T(n, 0) = prime(m) and m = 2.

Extensions

Edited by G. C. Greubel, Dec 03 2019

A196258 a(n) = 11^n*n!.

Original entry on oeis.org

1, 11, 242, 7986, 351384, 19326120, 1275523920, 98215341840, 8642950081920, 855652058110080, 94121726392108800, 11388728893445164800, 1503312213934761753600, 214973646592670930764800, 33105941575271323337779200
Offset: 0

Views

Author

Philippe Deléham, Oct 27 2011

Keywords

Crossrefs

Programs

Formula

a(n) = 11^n*n!.
E.g.f.: 1/(1-11*x).
From Amiram Eldar, Jun 25 2020: (Start)
Sum_{n>=0} 1/a(n) = e^(1/11).
Sum_{n>=0} (-1)^n/a(n) = e^(-1/11). (End)

A345105 a(n) = 1 + 3 * Sum_{k=0..n-1} binomial(n-1,k) * a(k) * a(n-k-1).

Original entry on oeis.org

1, 4, 25, 247, 3283, 54661, 1092427, 25473037, 678837319, 20351864821, 677954261635, 24842157250117, 993040102321927, 43003754679356941, 2005536858420616963, 100211634039201328381, 5341144936822423446247, 302468060262966258380773, 18136282125753572653056355
Offset: 0

Views

Author

Ilya Gutkovskiy, Jun 08 2021

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := a[n] = 1 + 3 Sum[Binomial[n - 1, k] a[k] a[n - k - 1], {k, 0, n - 1}]; Table[a[n], {n, 0, 18}]
    nmax = 18; A[] = 1; Do[A[x] = Normal[Integrate[3 A[x]^2 + Exp[x], x] + O[x]^(nmax + 1)], nmax]; CoefficientList[A[x], x] Range[0, nmax]!

Formula

E.g.f. A(x) satisfies: A'(x) = 3 * A(x)^2 + exp(x).

A146531 Triangle read by rows: a(n) = 3^floor(n/2)*Gamma(1 + floor(n/2)); t(n,m) = a(n)/(a(n - m)*a(m)).

Original entry on oeis.org

1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 6, 2, 6, 1, 1, 1, 2, 2, 1, 1, 1, 9, 3, 18, 3, 9, 1, 1, 1, 3, 3, 3, 3, 1, 1, 1, 12, 4, 36, 6, 36, 4, 12, 1, 1, 1, 4, 4, 6, 6, 4, 4, 1, 1, 1, 15, 5, 60, 10, 90, 10, 60, 5, 15, 1
Offset: 0

Views

Author

Roger L. Bagula, Oct 30 2008

Keywords

Comments

The row sums are: {1, 2, 5, 4, 16, 8, 44, 16, 112, 32, 272}.
The matrix inverse starts
1;
-1,1;
2,-3,1;
-2,2,-1,1;
13,-12,4,-6,1;
-13,13,-4,4,-1,1;
116,-117,39,-36,6,-9,1;
-116,116,-39,39,-6,6,-1,1;
1393,-1392,464,-468,78,-72,8,-12,1;
-1393,1393,-464,464,-78,78,-8,8,-1,1;
- R. J. Mathar, Apr 08 2013

Examples

			1;
1, 1;
1, 3, 1;
1, 1, 1, 1;
1, 6, 2, 6, 1;
1, 1, 2, 2, 1, 1;
1, 9, 3, 18, 3, 9, 1;
1, 1, 3, 3, 3, 3, 1, 1;
1, 12, 4, 36, 6, 36, 4, 12, 1;
1, 1, 4, 4, 6, 6, 4, 4, 1, 1;
1, 15, 5, 60, 10, 90, 10, 60, 5, 15,1;
		

Programs

  • Maple
    A032031 := proc(n)
        3^n*n! ;
    end proc:
    A146531 := proc(n,m)
        A032031(floor(n/2))/A032031(floor((n-m)/2))/A032031(floor(m/2)) ;
    end proc: # R. J. Mathar, Apr 08 2013
  • Mathematica
    Clear[a, n, t]; a[n_] = 3^Floor[n/2]*Gamma[1 + Floor[n/2]]; t[n_, m_] = a[n]/(a[n - m]*a[m]); Table[Table[t[n, m], {m, 0, n}], {n, 0, 10}]; Flatten[%]

Formula

t(n,m) = a(n)/( a(n-m)*a(m) ), where a(n) = A032031(floor(n/2)).

A190903 a(n) = Product_{k in M_n} k, M_n = {k | 1 <= k <= 3n and k mod 3 = n mod 3}.

Original entry on oeis.org

1, 1, 10, 162, 280, 12320, 524880, 1106560, 96342400, 7142567040, 17041024000, 2324549427200, 254561089305600, 664565853952000, 126757680265216000, 18763697892715776000, 52580450364682240000, 13106744139423334400000, 2480410751833883860992000
Offset: 0

Views

Author

Peter Luschny, Jul 03 2011

Keywords

Comments

For n > 0:
a(3*n) = A032031(3*n) = 3^(3*n) * Gamma(3*n + 1).
a(3*n-1) = A008544(3*n-1) = 3^(3*n-1) * Gamma(3*n - 1/3) / Gamma(2/3).
a(3*n+1) = A007559(3*n+1) = 3^(3*n+3/2) * Gamma(3*n + 4/3) * Gamma(2/3) / (2*Pi).

Crossrefs

Cf. A190901.

Programs

  • Maple
    A190903 := proc(n) local k; mul(k, k = select(k-> k mod 3 = n mod 3, [$1 .. 3*n])) end: seq(A190903(n), n=0..17);
  • Mathematica
    a[n_] := Switch[Mod[n, 3], 0, 3^n Gamma[n+1], 2, 3^n Gamma[n+2/3]/ Gamma[2/3], 1, 3^(n-1) Gamma[n+1/3]/Gamma[4/3]] // Round;
    Table[a[n], {n, 0, 20}] (* Jean-François Alcover, Jun 25 2019 *)
  • PARI
    a(n) = prod(k=1, 3*n, if (k % 3 == n % 3, k, 1)); \\ Michel Marcus, Jun 25 2019 and May 14 2020

Formula

From Johannes W. Meijer, Jul 04 2011: (Start)
a(3*n+3)/(a(3*n)*a(3)) = A006566(n+1); Dodecahedral numbers
a(3*n+4)/a(3*n+1) = A136214(3*n+4, 3*n+1)
a(3*n+5)/a(3*n+2) = A112333(3*n+5, 3*n+2) (End)

A068181 a(n)=-1/b(2n) where 1/(e^y-e^(y/3))= sum(i=-1,inf,b(i)*y^i).

Original entry on oeis.org

1, 18, 1944, 524880, 264539520, 214277011200, 254561089305600, 416971064282572800, 900657498850357248000, 2480410751833883860992000, 8483004771271882804592640000, 35272333838948488701496197120000
Offset: 0

Views

Author

Benoit Cloitre, Mar 12 2002

Keywords

Formula

a(n)=A007661(6n+1)=A032031(3n+1)

A348555 Numbers k that divide the sum of the digits of 3^k * k!.

Original entry on oeis.org

1, 3, 9, 27, 72, 111, 129, 148, 161, 450, 762, 1233, 1260, 2052, 9153, 15840, 16067, 16302, 16317, 16332, 16435, 74670, 74946, 125046, 208566, 347670, 347685, 583263, 1609667, 1610942, 1616476, 1616532, 1616958, 2683143, 2700261, 4480092, 7469682, 7470432, 7492497
Offset: 1

Views

Author

Kevin P. Thompson, Oct 21 2021

Keywords

Examples

			9 is a term because the sum of the digits of 3^9 * 9! = 7142567040 is 36 which is divisible by 9.
		

Crossrefs

Programs

  • Mathematica
    Do[If[Mod[Plus @@ IntegerDigits[3^n * n!], n] == 0, Print[n]], {n, 1, 10000}]
  • PARI
    isok(k) = !(sumdigits(3^k * k!) % k);

Extensions

a(36)-a(39) from Martin Ehrenstein, Nov 19 2021
Previous Showing 41-49 of 49 results.