A331817
a(n) = (n!)^2 * Sum_{k=0..n} (2*k)! / (2^k * (k!)^3 * (n - k)!).
Original entry on oeis.org
1, 2, 9, 66, 681, 9090, 148905, 2889810, 64805265, 1648535490, 46896669225, 1475099460450, 50831084252025, 1904311245686850, 77061447551313225, 3349828945512299250, 155672917524626126625, 7701743926471878533250, 404153655359180645543625
Offset: 0
-
[(Factorial(n))^2*&+[Factorial(2*k)/(2^k*(Factorial(k))^3*Factorial(n-k)):k in [0..n]]:n in [0..18]]; // Marius A. Burtea, Jan 27 2020
-
f:= gfun:-rectoproc({a(n + 2) = 2*(3 + 2*n)*a(n + 1) - 3*(n + 1)^2*a(n), a(0)=1, a(1)=2},a(n), remember):
map(f, [$0..30]); # Robert Israel, Feb 17 2020
-
Table[n!^2 Sum[(2 k)!/(2^k k!^3 (n - k)!), {k, 0, n}], {n, 0, 18}]
nmax = 18; CoefficientList[Series[1/Sqrt[1 - 4 x + 3 x^2], {x, 0, nmax}], x] Range[0, nmax]!
Table[n! Hypergeometric2F1[1/2, -n, 1, -2], {n, 0, 18}]
-
seq(n) = {Vec(serlaplace(1/(sqrt(1 - 4*x + 3*x^2 + O(x*x^n)))))} \\ Andrew Howroyd, Jan 27 2020
A108694
Triangle T(n,k), 0<=k<=n, read by rows, given by [1, 2, 2, 4, 3, 6, 4, 8, 5, 10, 6, 12, . . . ] DELTA [2, 1, 4, 2, 6, 3, 8, 4, 10, 5, 12, 6, . . . ] where DELTA is the operator defined in A084938.
Original entry on oeis.org
1, 1, 2, 3, 9, 6, 13, 54, 69, 26, 75, 399, 747, 573, 150, 541, 3508, 8638, 9998, 5393, 1082, 4683, 35817, 109248, 169038, 139143, 57585, 9366, 47293, 416762, 1515531, 2935222, 3256907, 2064534, 691645, 94586
Offset: 0
1; 1, 2; 3, 9, 6; 13, 54, 69, 26; 75, 399, 747, 573, 150; ...
A153270
Triangle T(n, k) = Product_{j=0..k} (j*n + prime(m)), with T(n, 0) = prime(m) and m = 2, read by rows.
Original entry on oeis.org
3, 3, 12, 3, 15, 105, 3, 18, 162, 1944, 3, 21, 231, 3465, 65835, 3, 24, 312, 5616, 129168, 3616704, 3, 27, 405, 8505, 229635, 7577955, 295540245, 3, 30, 510, 12240, 379440, 14418720, 648842400, 33739804800, 3, 33, 627, 16929, 592515, 25478145, 1299385395, 76663738305, 5136470466435
Offset: 0
Triangle begins as:
3;
3, 12;
3, 15, 105;
3, 18, 162, 1944;
3, 21, 231, 3465, 65835;
3, 24, 312, 5616, 129168, 3616704;
3, 27, 405, 8505, 229635, 7577955, 295540245;
3, 30, 510, 12240, 379440, 14418720, 648842400, 33739804800;
-
m:=2;
function T(n,k)
if k eq 0 then return NthPrime(m);
else return (&*[j*n + NthPrime(m): j in [0..k]]);
end if; return T; end function;
[T(n,k): k in [0..n], n in [0..10]]; // G. C. Greubel, Dec 03 2019
-
m:=2; seq(seq(`if`(k=0, ithprime(m), mul(j*n + ithprime(m), j=0..k)), k=0..n), n=0..10); # G. C. Greubel, Dec 03 2019
-
T[n_, k_, m_]:= If[k==0, Prime[m], Product[j*n + Prime[m], {j,0,k}]];
Table[T[n,k,2], {n,0,10}, {k,0,n}]//Flatten
-
T(n,k) = my(m=2); if(k==0, prime(m), prod(j=0,k, j*n + prime(m)) ); \\ G. C. Greubel, Dec 03 2019
-
def T(n, k):
m=2
if (k==0): return nth_prime(m)
else: return product(j*n + nth_prime(m) for j in (0..k))
[[T(n, k) for k in (0..n)] for n in (0..10)] # G. C. Greubel, Dec 03 2019
A196258
a(n) = 11^n*n!.
Original entry on oeis.org
1, 11, 242, 7986, 351384, 19326120, 1275523920, 98215341840, 8642950081920, 855652058110080, 94121726392108800, 11388728893445164800, 1503312213934761753600, 214973646592670930764800, 33105941575271323337779200
Offset: 0
Cf.
A000142,
A000165,
A032031,
A047053,
A052562,
A047058,
A051188,
A051189,
A051232,
A051262,
A145448.
A345105
a(n) = 1 + 3 * Sum_{k=0..n-1} binomial(n-1,k) * a(k) * a(n-k-1).
Original entry on oeis.org
1, 4, 25, 247, 3283, 54661, 1092427, 25473037, 678837319, 20351864821, 677954261635, 24842157250117, 993040102321927, 43003754679356941, 2005536858420616963, 100211634039201328381, 5341144936822423446247, 302468060262966258380773, 18136282125753572653056355
Offset: 0
-
a[n_] := a[n] = 1 + 3 Sum[Binomial[n - 1, k] a[k] a[n - k - 1], {k, 0, n - 1}]; Table[a[n], {n, 0, 18}]
nmax = 18; A[] = 1; Do[A[x] = Normal[Integrate[3 A[x]^2 + Exp[x], x] + O[x]^(nmax + 1)], nmax]; CoefficientList[A[x], x] Range[0, nmax]!
A146531
Triangle read by rows: a(n) = 3^floor(n/2)*Gamma(1 + floor(n/2)); t(n,m) = a(n)/(a(n - m)*a(m)).
Original entry on oeis.org
1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 6, 2, 6, 1, 1, 1, 2, 2, 1, 1, 1, 9, 3, 18, 3, 9, 1, 1, 1, 3, 3, 3, 3, 1, 1, 1, 12, 4, 36, 6, 36, 4, 12, 1, 1, 1, 4, 4, 6, 6, 4, 4, 1, 1, 1, 15, 5, 60, 10, 90, 10, 60, 5, 15, 1
Offset: 0
1;
1, 1;
1, 3, 1;
1, 1, 1, 1;
1, 6, 2, 6, 1;
1, 1, 2, 2, 1, 1;
1, 9, 3, 18, 3, 9, 1;
1, 1, 3, 3, 3, 3, 1, 1;
1, 12, 4, 36, 6, 36, 4, 12, 1;
1, 1, 4, 4, 6, 6, 4, 4, 1, 1;
1, 15, 5, 60, 10, 90, 10, 60, 5, 15,1;
-
A032031 := proc(n)
3^n*n! ;
end proc:
A146531 := proc(n,m)
A032031(floor(n/2))/A032031(floor((n-m)/2))/A032031(floor(m/2)) ;
end proc: # R. J. Mathar, Apr 08 2013
-
Clear[a, n, t]; a[n_] = 3^Floor[n/2]*Gamma[1 + Floor[n/2]]; t[n_, m_] = a[n]/(a[n - m]*a[m]); Table[Table[t[n, m], {m, 0, n}], {n, 0, 10}]; Flatten[%]
A190903
a(n) = Product_{k in M_n} k, M_n = {k | 1 <= k <= 3n and k mod 3 = n mod 3}.
Original entry on oeis.org
1, 1, 10, 162, 280, 12320, 524880, 1106560, 96342400, 7142567040, 17041024000, 2324549427200, 254561089305600, 664565853952000, 126757680265216000, 18763697892715776000, 52580450364682240000, 13106744139423334400000, 2480410751833883860992000
Offset: 0
-
A190903 := proc(n) local k; mul(k, k = select(k-> k mod 3 = n mod 3, [$1 .. 3*n])) end: seq(A190903(n), n=0..17);
-
a[n_] := Switch[Mod[n, 3], 0, 3^n Gamma[n+1], 2, 3^n Gamma[n+2/3]/ Gamma[2/3], 1, 3^(n-1) Gamma[n+1/3]/Gamma[4/3]] // Round;
Table[a[n], {n, 0, 20}] (* Jean-François Alcover, Jun 25 2019 *)
-
a(n) = prod(k=1, 3*n, if (k % 3 == n % 3, k, 1)); \\ Michel Marcus, Jun 25 2019 and May 14 2020
A068181
a(n)=-1/b(2n) where 1/(e^y-e^(y/3))= sum(i=-1,inf,b(i)*y^i).
Original entry on oeis.org
1, 18, 1944, 524880, 264539520, 214277011200, 254561089305600, 416971064282572800, 900657498850357248000, 2480410751833883860992000, 8483004771271882804592640000, 35272333838948488701496197120000
Offset: 0
A348555
Numbers k that divide the sum of the digits of 3^k * k!.
Original entry on oeis.org
1, 3, 9, 27, 72, 111, 129, 148, 161, 450, 762, 1233, 1260, 2052, 9153, 15840, 16067, 16302, 16317, 16332, 16435, 74670, 74946, 125046, 208566, 347670, 347685, 583263, 1609667, 1610942, 1616476, 1616532, 1616958, 2683143, 2700261, 4480092, 7469682, 7470432, 7492497
Offset: 1
9 is a term because the sum of the digits of 3^9 * 9! = 7142567040 is 36 which is divisible by 9.
-
Do[If[Mod[Plus @@ IntegerDigits[3^n * n!], n] == 0, Print[n]], {n, 1, 10000}]
-
isok(k) = !(sumdigits(3^k * k!) % k);
Comments