cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 44 results. Next

A194274 Concentric square numbers (see Comments lines for definition).

Original entry on oeis.org

0, 1, 4, 8, 12, 17, 24, 32, 40, 49, 60, 72, 84, 97, 112, 128, 144, 161, 180, 200, 220, 241, 264, 288, 312, 337, 364, 392, 420, 449, 480, 512, 544, 577, 612, 648, 684, 721, 760, 800, 840, 881, 924, 968, 1012, 1057, 1104, 1152, 1200, 1249, 1300, 1352, 1404
Offset: 0

Views

Author

Omar E. Pol, Aug 20 2011

Keywords

Comments

Cellular automaton on the first quadrant of the square grid. The sequence gives the number of cells "ON" in the structure after n-th stage. A098181 gives the first differences. For a definition without words see the illustration of initial terms in the example section. For other concentric polygonal numbers see A194273, A194275 and A032528.
Also, union of A046092 and A077221, the bisections of this sequence.
Also row sums of an infinite square array T(n,k) in which column k lists 4*k-1 zeros followed by the numbers A008574 (see example).

Examples

			Using the numbers A008574 we can write:
0, 1, 4, 8, 12, 16, 20, 24, 28, 32, 36, ...
0, 0, 0, 0, 0,  1,   4,  8, 12, 16, 20, ...
0, 0, 0, 0, 0,  0,   0,  0,  0,  1,  4, ...
And so on.
===========================================
The sums of the columns give this sequence:
0, 1, 4, 8, 12, 17, 24, 32, 40, 49, 60, ...
...
Illustration of initial terms:
.                                         o o o o o o
.                             o o o o o   o         o
.                   o o o o   o       o   o   o o   o
.           o o o   o     o   o   o   o   o   o o   o
.     o o   o   o   o     o   o       o   o         o
. o   o o   o o o   o o o o   o o o o o   o o o o o o
.
. 1    4      8        12         17           24
		

Crossrefs

Programs

  • Magma
    [n le 2 select n-1 else (n-1)^2 - Self(n-2): n in [1..61]]; // G. C. Greubel, Jan 31 2024
    
  • Mathematica
    Table[Floor[3*n/4] + Floor[(n*(n + 2) + 1)/2] - Floor[(3*n + 1)/4], {n, 0, 52}] (* Arkadiusz Wesolowski, Nov 08 2011 *)
    RecurrenceTable[{a[0]==0,a[1]==1,a[n]==n^2-a[n-2]},a,{n,60}] (* or *) LinearRecurrence[{3,-4,4,-3,1},{0,1,4,8,12},60] (* Harvey P. Dale, Sep 11 2013 *)
  • Python
    prpr = 0
    prev = 1
    for n in range(2,777):
        print(str(prpr), end=", ")
        curr = n*n - prpr
        prpr = prev
        prev = curr
    # Alex Ratushnyak, Aug 03 2012
    
  • Python
    def A194274(n): return (3*n>>2)+(n*(n+2)+1>>1)-(3*n+1>>2) # Chai Wah Wu, Jul 15 2023
    
  • SageMath
    def A194274(n): return n if n<2 else n^2 - A194274(n-2)
    [A194274(n) for n in range(41)] # G. C. Greubel, Jan 31 2024

Formula

a(n) = n^2 - a(n-2), with a(0)=0, a(1)=1. - Alex Ratushnyak, Aug 03 2012
From R. J. Mathar, Aug 22 2011: (Start)
G.f.: x*(1 + x)/((1 + x^2)*(1 - x)^3).
a(n) = (A005563(n) - A056594(n-1))/2. (End)
a(n) = a(-n-2) = (2*n*(n+2) + (1-(-1)^n)*i^(n+1))/4, where i=sqrt(-1). - Bruno Berselli, Sep 22 2011
a(n) = floor(3*n/4) + floor((n*(n+2)+1)/2) - floor((3*n+1)/4). - Arkadiusz Wesolowski, Nov 08 2011
a(n) = 3*a(n-1) - 4*a(n-2) + 4*a(n-3) - 3*a(n-4) + a(n-5), with a(0)=0, a(1)=1, a(2)=4, a(3)=8, a(4)=12. - Harvey P. Dale, Sep 11 2013
E.g.f.: (exp(x)*x*(3 + x) - sin(x))/2. - Stefano Spezia, Feb 26 2023

A195041 Concentric heptagonal numbers.

Original entry on oeis.org

0, 1, 7, 15, 28, 43, 63, 85, 112, 141, 175, 211, 252, 295, 343, 393, 448, 505, 567, 631, 700, 771, 847, 925, 1008, 1093, 1183, 1275, 1372, 1471, 1575, 1681, 1792, 1905, 2023, 2143, 2268, 2395, 2527, 2661, 2800, 2941, 3087, 3235, 3388, 3543
Offset: 0

Views

Author

Omar E. Pol, Sep 27 2011

Keywords

Comments

A033582 and A069127 interleaved.
Partial sums of A047336. - Reinhard Zumkeller, Jan 07 2012

Crossrefs

Programs

  • Haskell
    a195041 n = a195041_list !! n
    a195041_list = scanl (+) 0 a047336_list
    -- Reinhard Zumkeller, Jan 07 2012
    
  • Magma
    [7*n^2/4+3*((-1)^n-1)/8: n in [0..50]]; // Vincenzo Librandi, Sep 29 2011
    
  • Mathematica
    CoefficientList[Series[-((x (1+5 x+x^2))/((-1+x)^3 (1+x))),{x,0,80}],x] (* or *) LinearRecurrence[{2,0,-2,1},{0,1,7,15},80] (* Harvey P. Dale, Jan 18 2021 *)
  • PARI
    a(n)=7*n^2\4 \\ Charles R Greathouse IV, Oct 07 2015

Formula

a(n) = 7*n^2/4 + 3*((-1)^n - 1)/8.
From R. J. Mathar, Sep 28 2011: (Start)
G.f.: -x*(1+5*x+x^2) / ( (1+x)*(x-1)^3 ).
a(n) + a(n+1) = A069099(n+1). (End)
a(n) = n^2 + floor(3*n^2/4). - Bruno Berselli, Aug 08 2013
Sum_{n>=1} 1/a(n) = Pi^2/42 + tan(sqrt(3/7)*Pi/2)*Pi/sqrt(21). - Amiram Eldar, Jan 16 2023

A195043 Concentric 11-gonal numbers.

Original entry on oeis.org

0, 1, 11, 23, 44, 67, 99, 133, 176, 221, 275, 331, 396, 463, 539, 617, 704, 793, 891, 991, 1100, 1211, 1331, 1453, 1584, 1717, 1859, 2003, 2156, 2311, 2475, 2641, 2816, 2993, 3179, 3367, 3564, 3763, 3971, 4181, 4400, 4621, 4851, 5083, 5324, 5567
Offset: 0

Views

Author

Omar E. Pol, Sep 27 2011

Keywords

Comments

Also concentric hendecagonal numbers. A033584 and A069173 interleaved.
Partial sums of A175885. - Reinhard Zumkeller, Jan 07 2012

Crossrefs

Programs

  • Haskell
    a195043 n = a195043_list !! n
    a195043_list = scanl (+) 0 a175885_list
    -- Reinhard Zumkeller, Jan 07 2012
    
  • Magma
    [11*n^2/4+7*((-1)^n-1)/8: n in [0..50]]; // Vincenzo Librandi, Sep 30 2011
    
  • Mathematica
    LinearRecurrence[{2,0,-2,1},{0,1,11,23},50] (* Harvey P. Dale, May 20 2019 *)
  • PARI
    Vec(-x*(x^2+9*x+1)/((x-1)^3*(x+1)) + O(x^100)) \\ Colin Barker, Sep 15 2013

Formula

a(n) = 11*n^2/4 + 7*((-1)^n - 1)/8.
a(n) = -a(n-1) + A069125(n). - Vincenzo Librandi, Sep 30 2011
From Colin Barker, Sep 15 2013: (Start)
a(n) = 2*a(n-1) - 2*a(n-3) + a(n-4).
G.f.: -x*(x^2+9*x+1) / ((x-1)^3*(x+1)). (End)
Sum_{n>=1} 1/a(n) = Pi^2/66 + tan(sqrt(7/11)*Pi/2)*Pi/sqrt(77). - Amiram Eldar, Jan 16 2023

A195045 Concentric 13-gonal numbers.

Original entry on oeis.org

0, 1, 13, 27, 52, 79, 117, 157, 208, 261, 325, 391, 468, 547, 637, 729, 832, 937, 1053, 1171, 1300, 1431, 1573, 1717, 1872, 2029, 2197, 2367, 2548, 2731, 2925, 3121, 3328, 3537, 3757, 3979, 4212, 4447, 4693, 4941, 5200, 5461, 5733, 6007, 6292, 6579, 6877, 7177, 7488, 7801, 8125
Offset: 0

Views

Author

Omar E. Pol, Sep 27 2011

Keywords

Comments

Also concentric tridecagonal numbers or concentric triskaidecagonal numbers.
Partial sums of A175886. - Reinhard Zumkeller, Jan 07 2012

Crossrefs

Programs

Formula

a(n) = 13*n^2/4+9*((-1)^n-1)/8.
From R. J. Mathar, Sep 28 2011: (Start)
G.f.: -x*(1+11*x+x^2) / ( (1+x)*(x-1)^3 ).
a(n)+a(n+1) = A069126(n+1). (End)
a(n) = 2*a(n-1)-2*a(n-3)+a(n-4) for n>3. - Wesley Ivan Hurt, Nov 22 2015
Sum_{n>=1} 1/a(n) = Pi^2/78 + tan(3*Pi/(2*sqrt(13)))*Pi/(3*sqrt(13)). - Amiram Eldar, Jan 16 2023

A195048 Concentric 19-gonal numbers.

Original entry on oeis.org

0, 1, 19, 39, 76, 115, 171, 229, 304, 381, 475, 571, 684, 799, 931, 1065, 1216, 1369, 1539, 1711, 1900, 2091, 2299, 2509, 2736, 2965, 3211, 3459, 3724, 3991, 4275, 4561, 4864, 5169, 5491, 5815, 6156, 6499, 6859, 7221, 7600, 7981, 8379, 8779, 9196
Offset: 0

Views

Author

Omar E. Pol, Sep 27 2011

Keywords

Comments

Also concentric enneadecagonal numbers.

Crossrefs

Programs

Formula

a(n) = (19/4)*n^2 + (15/8)*((-1)^n - 1).
From Colin Barker, Sep 16 2012: (Start)
a(n) = 2*a(n-1) - 2*a(n-3) + a(n-4).
G.f.: x*(1 + 17*x + x^2)/((1-x)^3*(1+x)). (End)
Sum_{n>=1} 1/a(n) = Pi^2/114 + tan(sqrt(15/19)*Pi/2)*Pi/sqrt(285). - Amiram Eldar, Jan 17 2023

A195049 Concentric 21-gonal numbers.

Original entry on oeis.org

0, 1, 21, 43, 84, 127, 189, 253, 336, 421, 525, 631, 756, 883, 1029, 1177, 1344, 1513, 1701, 1891, 2100, 2311, 2541, 2773, 3024, 3277, 3549, 3823, 4116, 4411, 4725, 5041, 5376, 5713, 6069, 6427, 6804, 7183, 7581, 7981, 8400, 8821, 9261, 9703, 10164
Offset: 0

Views

Author

Omar E. Pol, Sep 27 2011

Keywords

Crossrefs

Programs

Formula

a(n) = 21*n^2/4 + 17*((-1)^n-1)/8.
From Colin Barker, Sep 16 2012: (Start)
a(n) = 2*a(n-1) - 2*a(n-3) + a(n-4).
G.f.: x*(1+19*x+x^2)/((1-x)^3*(1+x)). (End)
Sum_{n>=1} 1/a(n) = Pi^2/126 + tan(sqrt(17/21)*Pi/2)*Pi/sqrt(357). - Amiram Eldar, Jan 17 2023

A194275 Concentric pentagonal numbers of the second kind: a(n) = floor(5*n*(n+1)/6).

Original entry on oeis.org

0, 1, 5, 10, 16, 25, 35, 46, 60, 75, 91, 110, 130, 151, 175, 200, 226, 255, 285, 316, 350, 385, 421, 460, 500, 541, 585, 630, 676, 725, 775, 826, 880, 935, 991, 1050, 1110, 1171, 1235, 1300, 1366, 1435, 1505, 1576, 1650, 1725, 1801, 1880, 1960, 2041, 2125
Offset: 0

Views

Author

Omar E. Pol, Aug 20 2011

Keywords

Comments

Quasipolynomial: trisections are (15*x^2 - 15*x + 2)/2, 5*(15*x^2 - 5*x)/2, and 5*(15*x^2 + 5*x)/2. - Charles R Greathouse IV, Aug 23 2011
Appears to be similar to cellular automaton. The sequence gives the number of elements in the structure after n-th stage. Positive integers of A008854 gives the first differences. For a definition without words see the illustration of initial terms in the example section.
Also partial sums of A008854.
Also row sums of an infinite square array T(n,k) in which column k lists 3*k-1 zeros followed by the numbers A008706 (see example).
For concentric pentagonal numbers see A032527. - Omar E. Pol, Sep 27 2011

Examples

			Using the numbers A008706 we can write:
0, 1, 5, 10, 15, 20, 25, 30, 35, 40, 45, ...
0, 0, 0,  0,  1,  5, 10, 15, 20, 25, 30, ...
0, 0, 0,  0,  0,  0,  0,  1,  5, 10, 15, ...
0, 0, 0,  0,  0,  0,  0,  0,  0,  0,  1, ...
And so on.
===========================================
The sums of the columns give this sequence:
0, 1, 5, 10, 16, 25, 35, 46, 60, 75, 91, ...
...
Illustration of initial terms (in a precise representation the pentagons should appear strictly concentric):
.                                             o
.                                           o   o
.                            o            o       o
.                          o   o        o     o     o
.               o        o       o    o     o   o     o
.             o   o    o     o     o   o     o o     o
.      o    o       o   o         o     o           o
.    o   o   o     o     o       o       o         o
. o   o o     o o o       o o o o         o o o o o
.
. 1    5        10          16                25
		

Crossrefs

Cf. similar sequences with the formula floor(k*n*(n+1)/(k+1)) listed in A281026.

Programs

  • Magma
    [Floor(5*n*(n+1)/6): n in [0..60]]; // Vincenzo Librandi, Sep 27 2011
  • Mathematica
    Table[Floor[5 n (n + 1)/6], {n, 0, 50}] (* Arkadiusz Wesolowski, Oct 03 2011 *)
  • PARI
    a(n)=5*n*(n+1)\6 \\ Charles R Greathouse IV, Aug 23 2011
    

Formula

G.f.: (-1 - 3*x - x^2)/((-1 + x)^3*(1 + x + x^2)). - Alexander R. Povolotsky, Aug 22 2011
a(n) = floor(5*n*(n+1)/6). - Arkadiusz Wesolowski, Aug 23 2011

Extensions

Name improved by Arkadiusz Wesolowski, Aug 23 2011
New name from Omar E. Pol, Sep 28 2011

A195046 Concentric 15-gonal numbers.

Original entry on oeis.org

0, 1, 15, 31, 60, 91, 135, 181, 240, 301, 375, 451, 540, 631, 735, 841, 960, 1081, 1215, 1351, 1500, 1651, 1815, 1981, 2160, 2341, 2535, 2731, 2940, 3151, 3375, 3601, 3840, 4081, 4335, 4591, 4860, 5131, 5415, 5701, 6000, 6301, 6615, 6931, 7260, 7591
Offset: 0

Views

Author

Omar E. Pol, Sep 27 2011

Keywords

Crossrefs

Programs

  • Mathematica
    Table[15n^2/4+11((-1)^n-1)/8,{n,0,50}] (* or *) LinearRecurrence[ {2,0,-2,1},{0,1,15,31},50] (* Harvey P. Dale, Feb 23 2012 *)
  • PARI
    a(n)=15*n^2/4+11*((-1)^n-1)/8 \\ Charles R Greathouse IV, Oct 07 2015

Formula

a(n) = 15*n^2/4+11*((-1)^n-1)/8.
From Harvey P. Dale, Feb 23 2012: (Start)
a(0)=0, a(1)=1, a(2)=15, a(3)=31, a(n)=2*a(n-1)-2*a(n-3)+a(n-4).
G.f.: -((x*(1+x*(13+x)))/((-1+x)^3*(1+x))). (End)
Sum_{n>=1} 1/a(n) = Pi^2/90 + tan(sqrt(11/15)*Pi/2)*Pi/sqrt(165). - Amiram Eldar, Jan 16 2023

Extensions

a(1)=1 added by Harvey P. Dale, Feb 23 2012

A195047 Concentric 17-gonal numbers.

Original entry on oeis.org

0, 1, 17, 35, 68, 103, 153, 205, 272, 341, 425, 511, 612, 715, 833, 953, 1088, 1225, 1377, 1531, 1700, 1871, 2057, 2245, 2448, 2653, 2873, 3095, 3332, 3571, 3825, 4081, 4352, 4625, 4913, 5203, 5508, 5815, 6137, 6461, 6800, 7141, 7497, 7855, 8228, 8603, 8993
Offset: 0

Views

Author

Omar E. Pol, Sep 27 2011

Keywords

Comments

Also concentric heptadecagonal numbers or concentric heptakaidecagonal numbers.

Crossrefs

Programs

Formula

a(n) = 17*n^2/4+13*((-1)^n-1)/8. [Typo fixed by Ivan Panchenko, Nov 08 2013]
From R. J. Mathar, Sep 28 2011: (Start)
G.f.: -x*(1+15*x+x^2) / ( (1+x)*(x-1)^3 ).
a(n)+a(n+1) = A069130(n+1). (End)
From Bruno Berselli, Sep 29 2011: (Start)
a(n) = a(-n) = (34*n^2+13*(-1)^n-13)/8.
a(n) = A151978(A061925(n)). (End)
Sum_{n>=1} 1/a(n) = Pi^2/102 + tan(sqrt(13/17)*Pi/2)*Pi/sqrt(221). - Amiram Eldar, Jan 16 2023

A195058 Concentric 23-gonal numbers.

Original entry on oeis.org

0, 1, 23, 47, 92, 139, 207, 277, 368, 461, 575, 691, 828, 967, 1127, 1289, 1472, 1657, 1863, 2071, 2300, 2531, 2783, 3037, 3312, 3589, 3887, 4187, 4508, 4831, 5175, 5521, 5888, 6257, 6647, 7039, 7452, 7867, 8303, 8741, 9200, 9661, 10143, 10627
Offset: 0

Views

Author

Omar E. Pol, Sep 28 2011

Keywords

Crossrefs

Column 23 of A195040.

Programs

Formula

a(n) = 23*n^2/4 + 19*((-1)^n-1)/8.
From Colin Barker, Sep 16 2012: (Start)
a(n) = 2*a(n-1) - 2*a(n-3) + a(n-4).
G.f.: x*(1 + 21*x + x^2)/((1-x)^3*(1+x)). (End)
Sum_{n>=1} 1/a(n) = Pi^2/138 + tan(sqrt(19/23)*Pi/2)*Pi/sqrt(437). - Amiram Eldar, Jan 17 2023
Previous Showing 21-30 of 44 results. Next