A194274
Concentric square numbers (see Comments lines for definition).
Original entry on oeis.org
0, 1, 4, 8, 12, 17, 24, 32, 40, 49, 60, 72, 84, 97, 112, 128, 144, 161, 180, 200, 220, 241, 264, 288, 312, 337, 364, 392, 420, 449, 480, 512, 544, 577, 612, 648, 684, 721, 760, 800, 840, 881, 924, 968, 1012, 1057, 1104, 1152, 1200, 1249, 1300, 1352, 1404
Offset: 0
Using the numbers A008574 we can write:
0, 1, 4, 8, 12, 16, 20, 24, 28, 32, 36, ...
0, 0, 0, 0, 0, 1, 4, 8, 12, 16, 20, ...
0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 4, ...
And so on.
===========================================
The sums of the columns give this sequence:
0, 1, 4, 8, 12, 17, 24, 32, 40, 49, 60, ...
...
Illustration of initial terms:
. o o o o o o
. o o o o o o o
. o o o o o o o o o o
. o o o o o o o o o o o o
. o o o o o o o o o o
. o o o o o o o o o o o o o o o o o o o o o
.
. 1 4 8 12 17 24
-
[n le 2 select n-1 else (n-1)^2 - Self(n-2): n in [1..61]]; // G. C. Greubel, Jan 31 2024
-
Table[Floor[3*n/4] + Floor[(n*(n + 2) + 1)/2] - Floor[(3*n + 1)/4], {n, 0, 52}] (* Arkadiusz Wesolowski, Nov 08 2011 *)
RecurrenceTable[{a[0]==0,a[1]==1,a[n]==n^2-a[n-2]},a,{n,60}] (* or *) LinearRecurrence[{3,-4,4,-3,1},{0,1,4,8,12},60] (* Harvey P. Dale, Sep 11 2013 *)
-
prpr = 0
prev = 1
for n in range(2,777):
print(str(prpr), end=", ")
curr = n*n - prpr
prpr = prev
prev = curr
# Alex Ratushnyak, Aug 03 2012
-
def A194274(n): return (3*n>>2)+(n*(n+2)+1>>1)-(3*n+1>>2) # Chai Wah Wu, Jul 15 2023
-
def A194274(n): return n if n<2 else n^2 - A194274(n-2)
[A194274(n) for n in range(41)] # G. C. Greubel, Jan 31 2024
A195041
Concentric heptagonal numbers.
Original entry on oeis.org
0, 1, 7, 15, 28, 43, 63, 85, 112, 141, 175, 211, 252, 295, 343, 393, 448, 505, 567, 631, 700, 771, 847, 925, 1008, 1093, 1183, 1275, 1372, 1471, 1575, 1681, 1792, 1905, 2023, 2143, 2268, 2395, 2527, 2661, 2800, 2941, 3087, 3235, 3388, 3543
Offset: 0
-
a195041 n = a195041_list !! n
a195041_list = scanl (+) 0 a047336_list
-- Reinhard Zumkeller, Jan 07 2012
-
[7*n^2/4+3*((-1)^n-1)/8: n in [0..50]]; // Vincenzo Librandi, Sep 29 2011
-
CoefficientList[Series[-((x (1+5 x+x^2))/((-1+x)^3 (1+x))),{x,0,80}],x] (* or *) LinearRecurrence[{2,0,-2,1},{0,1,7,15},80] (* Harvey P. Dale, Jan 18 2021 *)
-
a(n)=7*n^2\4 \\ Charles R Greathouse IV, Oct 07 2015
A195043
Concentric 11-gonal numbers.
Original entry on oeis.org
0, 1, 11, 23, 44, 67, 99, 133, 176, 221, 275, 331, 396, 463, 539, 617, 704, 793, 891, 991, 1100, 1211, 1331, 1453, 1584, 1717, 1859, 2003, 2156, 2311, 2475, 2641, 2816, 2993, 3179, 3367, 3564, 3763, 3971, 4181, 4400, 4621, 4851, 5083, 5324, 5567
Offset: 0
-
a195043 n = a195043_list !! n
a195043_list = scanl (+) 0 a175885_list
-- Reinhard Zumkeller, Jan 07 2012
-
[11*n^2/4+7*((-1)^n-1)/8: n in [0..50]]; // Vincenzo Librandi, Sep 30 2011
-
LinearRecurrence[{2,0,-2,1},{0,1,11,23},50] (* Harvey P. Dale, May 20 2019 *)
-
Vec(-x*(x^2+9*x+1)/((x-1)^3*(x+1)) + O(x^100)) \\ Colin Barker, Sep 15 2013
A195045
Concentric 13-gonal numbers.
Original entry on oeis.org
0, 1, 13, 27, 52, 79, 117, 157, 208, 261, 325, 391, 468, 547, 637, 729, 832, 937, 1053, 1171, 1300, 1431, 1573, 1717, 1872, 2029, 2197, 2367, 2548, 2731, 2925, 3121, 3328, 3537, 3757, 3979, 4212, 4447, 4693, 4941, 5200, 5461, 5733, 6007, 6292, 6579, 6877, 7177, 7488, 7801, 8125
Offset: 0
-
a195045 n = a195045_list !! n
a195045_list = scanl (+) 0 a175886_list
-- Reinhard Zumkeller, Jan 07 2012
-
[13*n^2/4+9*((-1)^n-1)/8: n in [0..50]]; // Vincenzo Librandi, Sep 29 2011
-
A195045:=n->13*n^2/4+9*((-1)^n-1)/8: seq(A195045(n), n=0..70); # Wesley Ivan Hurt, Nov 22 2015
-
Table[13 n^2/4 + 9 ((-1)^n - 1)/8, {n, 0, 50}] (* Wesley Ivan Hurt, Nov 22 2015 *)
-
a(n)=13*n^2/4+9*((-1)^n-1)/8 \\ Charles R Greathouse IV, Oct 07 2015
-
concat(0, Vec(-x*(1+11*x+x^2)/((1+x)*(x-1)^3) + O(x^50))) \\ Altug Alkan, Nov 22 2015
A195048
Concentric 19-gonal numbers.
Original entry on oeis.org
0, 1, 19, 39, 76, 115, 171, 229, 304, 381, 475, 571, 684, 799, 931, 1065, 1216, 1369, 1539, 1711, 1900, 2091, 2299, 2509, 2736, 2965, 3211, 3459, 3724, 3991, 4275, 4561, 4864, 5169, 5491, 5815, 6156, 6499, 6859, 7221, 7600, 7981, 8379, 8779, 9196
Offset: 0
-
LinearRecurrence[{2,0,-2,1},{0,1,19,39},50] (* Harvey P. Dale, May 17 2016 *)
-
a(n)=19*n^2/4+15*((-1)^n-1)/8 \\ Charles R Greathouse IV, Oct 07 2015
A195049
Concentric 21-gonal numbers.
Original entry on oeis.org
0, 1, 21, 43, 84, 127, 189, 253, 336, 421, 525, 631, 756, 883, 1029, 1177, 1344, 1513, 1701, 1891, 2100, 2311, 2541, 2773, 3024, 3277, 3549, 3823, 4116, 4411, 4725, 5041, 5376, 5713, 6069, 6427, 6804, 7183, 7581, 7981, 8400, 8821, 9261, 9703, 10164
Offset: 0
-
A195049:=n->21*n^2/4+17*((-1)^n-1)/8: seq(A195049(n), n=0..100); # Wesley Ivan Hurt, Jan 17 2017
-
LinearRecurrence[{2, 0, -2, 1}, {0, 1, 21, 43}, 50] (* Amiram Eldar, Jan 17 2023 *)
-
a(n)=21*n^2/4+17*((-1)^n-1)/8 \\ Charles R Greathouse IV, Oct 07 2015
A194275
Concentric pentagonal numbers of the second kind: a(n) = floor(5*n*(n+1)/6).
Original entry on oeis.org
0, 1, 5, 10, 16, 25, 35, 46, 60, 75, 91, 110, 130, 151, 175, 200, 226, 255, 285, 316, 350, 385, 421, 460, 500, 541, 585, 630, 676, 725, 775, 826, 880, 935, 991, 1050, 1110, 1171, 1235, 1300, 1366, 1435, 1505, 1576, 1650, 1725, 1801, 1880, 1960, 2041, 2125
Offset: 0
Using the numbers A008706 we can write:
0, 1, 5, 10, 15, 20, 25, 30, 35, 40, 45, ...
0, 0, 0, 0, 1, 5, 10, 15, 20, 25, 30, ...
0, 0, 0, 0, 0, 0, 0, 1, 5, 10, 15, ...
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, ...
And so on.
===========================================
The sums of the columns give this sequence:
0, 1, 5, 10, 16, 25, 35, 46, 60, 75, 91, ...
...
Illustration of initial terms (in a precise representation the pentagons should appear strictly concentric):
. o
. o o
. o o o
. o o o o o
. o o o o o o o
. o o o o o o o o o
. o o o o o o o
. o o o o o o o o
. o o o o o o o o o o o o o o o
.
. 1 5 10 16 25
Cf. similar sequences with the formula floor(k*n*(n+1)/(k+1)) listed in
A281026.
A195046
Concentric 15-gonal numbers.
Original entry on oeis.org
0, 1, 15, 31, 60, 91, 135, 181, 240, 301, 375, 451, 540, 631, 735, 841, 960, 1081, 1215, 1351, 1500, 1651, 1815, 1981, 2160, 2341, 2535, 2731, 2940, 3151, 3375, 3601, 3840, 4081, 4335, 4591, 4860, 5131, 5415, 5701, 6000, 6301, 6615, 6931, 7260, 7591
Offset: 0
-
Table[15n^2/4+11((-1)^n-1)/8,{n,0,50}] (* or *) LinearRecurrence[ {2,0,-2,1},{0,1,15,31},50] (* Harvey P. Dale, Feb 23 2012 *)
-
a(n)=15*n^2/4+11*((-1)^n-1)/8 \\ Charles R Greathouse IV, Oct 07 2015
A195047
Concentric 17-gonal numbers.
Original entry on oeis.org
0, 1, 17, 35, 68, 103, 153, 205, 272, 341, 425, 511, 612, 715, 833, 953, 1088, 1225, 1377, 1531, 1700, 1871, 2057, 2245, 2448, 2653, 2873, 3095, 3332, 3571, 3825, 4081, 4352, 4625, 4913, 5203, 5508, 5815, 6137, 6461, 6800, 7141, 7497, 7855, 8228, 8603, 8993
Offset: 0
-
LinearRecurrence[{2,0,-2,1},{0,1,17,35},50] (* Harvey P. Dale, Dec 23 2017 *)
-
a(n)=17*n^2/4+13*((-1)^n-1)/8 \\ Charles R Greathouse IV, Oct 07 2015
A195058
Concentric 23-gonal numbers.
Original entry on oeis.org
0, 1, 23, 47, 92, 139, 207, 277, 368, 461, 575, 691, 828, 967, 1127, 1289, 1472, 1657, 1863, 2071, 2300, 2531, 2783, 3037, 3312, 3589, 3887, 4187, 4508, 4831, 5175, 5521, 5888, 6257, 6647, 7039, 7452, 7867, 8303, 8741, 9200, 9661, 10143, 10627
Offset: 0
-
Table[23n^2/4 + 19((-1)^n - 1)/8, {n, 0, 49}] (* Alonso del Arte, Jan 23 2015 *)
LinearRecurrence[{2,0,-2,1},{0,1,23,47},50] (* Harvey P. Dale, Jul 22 2023 *)
-
a(n)=23*n^2/4+19*((-1)^n-1)/8 \\ Charles R Greathouse IV, Oct 07 2015
Comments