cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 51-60 of 213 results. Next

A338648 Number of divisors of n which are greater than 4.

Original entry on oeis.org

0, 0, 0, 0, 1, 1, 1, 1, 1, 2, 1, 2, 1, 2, 2, 2, 1, 3, 1, 3, 2, 2, 1, 4, 2, 2, 2, 3, 1, 5, 1, 3, 2, 2, 3, 5, 1, 2, 2, 5, 1, 5, 1, 3, 4, 2, 1, 6, 2, 4, 2, 3, 1, 5, 3, 5, 2, 2, 1, 8, 1, 2, 4, 4, 3, 5, 1, 3, 2, 6, 1, 8, 1, 2, 4, 3, 3, 5, 1, 7, 3, 2, 1, 8, 3, 2, 2, 5, 1, 9, 3, 3, 2, 2, 3, 8, 1, 4, 4, 6, 1, 5, 1, 5, 6, 2, 1, 8, 1, 6
Offset: 1

Views

Author

Ilya Gutkovskiy, Apr 22 2021

Keywords

Crossrefs

Programs

  • Mathematica
    Table[DivisorSum[n, 1 &, # > 4 &], {n, 1, 110}]
    nmax = 110; CoefficientList[Series[Sum[x^(5 k)/(1 - x^k), {k, 1, nmax}], {x, 0, nmax}], x] // Drop[#, 1] &
    nmax = 110; CoefficientList[Series[-Log[Product[(1 - x^k)^(1/k), {k, 5, nmax}]], {x, 0, nmax}], x] Range[0, nmax] // Drop[#, 1] &
  • PARI
    a(n) = sumdiv(n, d, d>4); \\ Michel Marcus, Apr 22 2021; corrected Jun 13 2022
    
  • PARI
    my(N=100, x='x+O('x^N)); concat([0, 0, 0, 0], Vec(sum(k=5, N, x^k/(1-x^k)))) \\ Seiichi Manyama, Jan 07 2023

Formula

G.f.: Sum_{k>=1} x^(5*k) / (1 - x^k).
L.g.f.: -log( Product_{k>=5} (1 - x^k)^(1/k) ).
a(n) = A000005(n) - A083040(n).
G.f.: Sum_{k>=5} x^k/(1 - x^k). - Seiichi Manyama, Jan 07 2023
Sum_{k=1..n} a(k) ~ n * (log(n) + 2*gamma - 37/12), where gamma is Euler's constant (A001620). - Amiram Eldar, Jan 08 2024

Extensions

a(1)-a(4) prepended by David A. Corneth, Jun 13 2022

A338649 Number of divisors of n which are greater than 5.

Original entry on oeis.org

0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 2, 1, 2, 1, 2, 1, 3, 1, 2, 2, 2, 1, 4, 1, 2, 2, 3, 1, 4, 1, 3, 2, 2, 2, 5, 1, 2, 2, 4, 1, 5, 1, 3, 3, 2, 1, 6, 2, 3, 2, 3, 1, 5, 2, 5, 2, 2, 1, 7, 1, 2, 4, 4, 2, 5, 1, 3, 2, 5, 1, 8, 1, 2, 3, 3, 3, 5, 1, 6, 3, 2, 1, 8, 2, 2, 2, 5, 1, 8, 3, 3, 2, 2, 2, 8, 1, 4, 4, 5, 1, 5, 1, 5, 5, 2, 1, 8, 1, 5
Offset: 1

Views

Author

Ilya Gutkovskiy, Apr 22 2021

Keywords

Crossrefs

Programs

  • Mathematica
    Table[DivisorSum[n, 1 &, # > 5 &], {n, 1, 110}]
    nmax = 110; CoefficientList[Series[Sum[x^(6 k)/(1 - x^k), {k, 1, nmax}], {x, 0, nmax}], x] // Drop[#, 1] &
    nmax = 110; CoefficientList[Series[-Log[Product[(1 - x^k)^(1/k), {k, 6, nmax}]], {x, 0, nmax}], x] Range[0, nmax] // Drop[#, 1] &
  • PARI
    a(n) = sumdiv(n, d, d>5); \\ Michel Marcus, Apr 22 2021
    
  • PARI
    my(N=100, x='x+O('x^N)); concat([0, 0, 0, 0, 0], Vec(sum(k=6, N, x^k/(1-x^k)))) \\ Seiichi Manyama, Jan 07 2023

Formula

G.f.: Sum_{k>=1} x^(6*k) / (1 - x^k).
L.g.f.: -log( Product_{k>=6} (1 - x^k)^(1/k) ).
G.f.: Sum_{k>=6} x^k/(1 - x^k). - Seiichi Manyama, Jan 07 2023
Sum_{k=1..n} a(k) ~ n * (log(n) + 2*gamma - 197/60), where gamma is Euler's constant (A001620). - Amiram Eldar, Jan 08 2024

Extensions

a(1)-a(5) prepended by David A. Corneth, Jun 13 2022

A354960 a(1) = 1, a(2) = 2; for n > 2, a(n) is the smallest positive number not occurring earlier that is a multiple of the number of proper divisors of a(n-1).

Original entry on oeis.org

1, 2, 3, 4, 6, 9, 8, 12, 5, 7, 10, 15, 18, 20, 25, 14, 21, 24, 28, 30, 35, 27, 33, 36, 16, 32, 40, 42, 49, 22, 39, 45, 50, 55, 48, 54, 56, 63, 60, 11, 13, 17, 19, 23, 26, 51, 57, 66, 70, 77, 69, 72, 44, 65, 75, 80, 81, 52, 85, 78, 84, 88, 91, 87, 90, 99, 95, 93, 96, 110, 98, 100, 64, 102, 105, 112
Offset: 1

Views

Author

Scott R. Shannon, Jul 23 2022

Keywords

Comments

The terms are concentrated along numerous lines, some of which curve upward while others curve downward. See the first linked image. Surprisingly these lines are not shared by terms which are a multiple of a given proper divisor count, but predominantly by terms sharing a certain prime factor. See the second linked image.
The sequence is conjectured to be a permutation of the positive integers although it may take an extremely large number of terms for the primes to appear; e.g., 263 has not occurred after 500000 terms. Also although the vast majority of primes will appear in their natural order, some may not; e.g., a(455) = 840, which has 31 proper divisors, so a(456) = 31, and then a(457) = 29.
In the first 500000 terms the only fixed points beyond the first two are 3, 4, 1159, 1207. It is possible that no more exist, although this is unknown.

Examples

			a(3) = 3 as a(2) = 2 which has one proper divisor, and 2 is the smallest unused multiple of 1.
a(5) = 6 as a(4) = 4 which has two proper divisors, and 6 is the smallest unused multiple of 2.
a(9) = 5 as a(8) = 12 which has five proper divisors, and 5 is the smallest unused multiple of 5.
		

Crossrefs

Programs

A363604 Expansion of Sum_{k>0} x^(2*k)/(1-x^k)^4.

Original entry on oeis.org

0, 1, 4, 11, 20, 40, 56, 95, 124, 186, 220, 336, 364, 512, 584, 775, 816, 1129, 1140, 1526, 1600, 1992, 2024, 2720, 2620, 3290, 3400, 4176, 4060, 5280, 4960, 6231, 6208, 7362, 7216, 9195, 8436, 10280, 10248, 12270, 11480, 14432, 13244, 16192, 15884, 18240
Offset: 1

Views

Author

Seiichi Manyama, Jun 11 2023

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := (DivisorSigma[3, n] - DivisorSigma[1, n])/6; Array[a, 50] (* Amiram Eldar, Jul 25 2023 *)
  • PARI
    my(N=50, x='x+O('x^N)); concat(0, Vec(sum(k=1, N, x^(2*k)/(1-x^k)^4)))
    
  • PARI
    a(n) = my(f = factor(n)); (sigma(f, 3) - sigma(f))/6; \\ Amiram Eldar, Dec 30 2024

Formula

a(n) = (sigma_3(n) - sigma(n))/6 = A092348(n)/6.
G.f.: Sum_{k>0} binomial(k+1,3) * x^k/(1 - x^k).
From Amiram Eldar, Dec 30 2024: (Start)
Dirichlet g.f.: zeta(s) * (zeta(s-3) - zeta(s-1)) / 6.
Sum_{k=1..n} a(k) ~ (zeta(4)/24) * n^4. (End)

A084114 Number of divisions when calculating A084110(n).

Original entry on oeis.org

0, 0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 1, 1, 0, 1, 0, 1, 1, 1, 0, 2, 0, 1, 1, 1, 0, 2, 0, 1, 1, 1, 1, 2, 0, 1, 1, 2, 0, 2, 0, 1, 1, 1, 0, 3, 0, 1, 1, 1, 0, 2, 1, 2, 1, 1, 0, 4, 0, 1, 1, 2, 1, 2, 0, 1, 1, 2, 0, 4, 0, 1, 1, 1, 1, 2, 0, 3, 1, 1, 0, 4, 1, 1, 1, 2, 0, 4, 1, 1, 1, 1, 1, 4, 0, 1, 1, 2, 0, 2, 0, 2, 2
Offset: 1

Views

Author

Reinhard Zumkeller, May 12 2003

Keywords

Comments

a(n) = A000005(n) - 1 - A084113(n) = A032741(n) - A084113(n) = (A032741(n)-A084115(n))/2;
a(n) = 0 iff n is prime or a square of prime (A000430).

Crossrefs

Programs

  • Haskell
    a084114 = g 0 1 . tail . a027750_row where
       g c _ []     = c
       g c x (d:ds) = if r > 0 then g c (x * d) ds else g (c + 1) x' ds
                      where (x', r) = divMod x d
    -- Reinhard Zumkeller, Jul 31 2014

A084115 A084113(n) minus A084114(n).

Original entry on oeis.org

0, 1, 1, 2, 1, 1, 1, 1, 2, 1, 1, 3, 1, 1, 1, 2, 1, 3, 1, 3, 1, 1, 1, 3, 2, 1, 1, 3, 1, 3, 1, 3, 1, 1, 1, 4, 1, 1, 1, 3, 1, 3, 1, 3, 3, 1, 1, 3, 2, 3, 1, 3, 1, 3, 1, 3, 1, 1, 1, 3, 1, 1, 3, 2, 1, 3, 1, 3, 1, 3, 1, 3, 1, 1, 3, 3, 1, 3, 1, 3, 2, 1, 1, 3, 1, 1, 1, 3, 1, 3, 1, 3, 1, 1, 1, 3, 1, 3, 3, 4, 1, 3, 1, 3, 3
Offset: 1

Views

Author

Reinhard Zumkeller, May 12 2003

Keywords

Comments

a(n) = A084113(n) - A084114(n) = 2*A084113(n) - A032741(n) = A032741(n) - 2*A084114(n);
a(A084116(n)) = 1.

Crossrefs

Programs

Extensions

Definition fixed by Reinhard Zumkeller, Jul 31 2014

A294138 Number of compositions (ordered partitions) of n into proper divisors of n.

Original entry on oeis.org

1, 0, 1, 1, 5, 1, 24, 1, 55, 19, 128, 1, 1627, 1, 741, 449, 5271, 1, 45315, 1, 83343, 3320, 29966, 1, 5105721, 571, 200389, 26425, 5469758, 1, 154004510, 1, 47350055, 226019, 9262156, 51885, 15140335649, 1, 63346597, 2044894, 14700095925, 1, 185493291000, 1, 35539518745, 478164162
Offset: 0

Views

Author

Ilya Gutkovskiy, Oct 23 2017

Keywords

Examples

			a(4) = 5 because 4 has 3 divisors {1, 2, 4} among which 2 are proper divisors {1, 2} therefore we have [2, 2], [2, 1, 1], [1, 2, 1], [1, 1, 2] and [1, 1, 1, 1].
		

Crossrefs

Programs

  • Mathematica
    Table[d = Divisors[n]; Coefficient[Series[1/(1 - Sum[Boole[d[[k]] != n] x^d[[k]], {k, Length[d]}]), {x, 0, n}], x, n], {n, 0, 45}]

Formula

a(n) = [x^n] 1/(1 - Sum_{d|n, d < n} x^d).
a(n) = A100346(n) - 1.

A294901 Number of proper divisors of n that are in A257691.

Original entry on oeis.org

0, 1, 1, 2, 1, 3, 1, 2, 2, 3, 1, 3, 1, 3, 3, 2, 1, 3, 1, 3, 3, 3, 1, 3, 2, 3, 2, 3, 1, 4, 1, 2, 3, 3, 3, 3, 1, 3, 3, 3, 1, 4, 1, 3, 3, 3, 1, 3, 2, 4, 3, 3, 1, 3, 3, 3, 3, 3, 1, 4, 1, 3, 3, 2, 3, 4, 1, 3, 3, 4, 1, 3, 1, 3, 4, 3, 3, 4, 1, 3, 2, 3, 1, 4, 3, 3, 3, 3, 1, 4, 3, 3, 3, 3, 3, 3, 1, 3, 3, 4, 1, 4, 1, 3, 4, 3, 1, 3, 1, 4, 3, 3, 1, 4, 3, 3, 3, 3, 3, 4
Offset: 1

Views

Author

Antti Karttunen, Nov 10 2017

Keywords

Crossrefs

Programs

  • Mathematica
    q[n_] := DivisorSum[n, DigitCount[#, 2, 1] &] <= 2*DigitCount[n, 2, 1]; a[n_] := DivisorSum[n, 1 &, # < n && q[#] &]; Array[a, 100] (* Amiram Eldar, Jul 20 2023 *)
  • PARI
    A292257(n) = sumdiv(n,d,(dA294905(n) = (A292257(n) <= hammingweight(n));
    A294901(n) = sumdiv(n,d,(dA294905(d));

Formula

a(n) = Sum_{d|n, dA294905(d).
a(n) = A294903(n) - A294905(n).
a(n) + A294902(n) = A032741(n).

A304102 a(n) = Product_{d|n, dA304101(d)-1).

Original entry on oeis.org

1, 2, 2, 4, 2, 8, 2, 12, 4, 8, 2, 120, 2, 12, 8, 24, 2, 200, 2, 120, 12, 12, 2, 1680, 4, 8, 20, 180, 2, 2000, 2, 120, 12, 44, 12, 12600, 2, 44, 8, 1680, 2, 1200, 2, 180, 200, 20, 2, 42000, 6, 440, 44, 120, 2, 7800, 12, 3960, 44, 12, 2, 3234000, 2, 44, 120, 840, 8, 10200, 2, 264, 20, 3000, 2, 630000, 2, 20, 440, 1452, 18, 2000, 2, 109200, 260, 44, 2, 1386000
Offset: 1

Views

Author

Antti Karttunen, May 13 2018

Keywords

Crossrefs

Cf. A304101, A304103 (restricted growth sequence transform of this sequence), A304104.

Programs

  • PARI
    \\ Needs also code from A304101:
    A304102(n) = { my(m=1); fordiv(n,d,if(dA304101(d)-1))); (m); };

Formula

a(n) = Product_{d|n, dA000040(A304101(d)-1).
a(n) = 2*A304104(n) / A000040(A304101(n)-1).
Other identities. For all n >= 1:
A001222(a(n)) = A032741(n).
A007814(a(n)) = A293435(n).
A007949(a(n)) = A304095(n).

A336942 Number of strict chains of divisors in A130091 (numbers with distinct prime multiplicities) starting with the superprimorial A006939(n) and ending with 1.

Original entry on oeis.org

1, 1, 5, 95, 8823, 4952323, 20285515801, 714092378624317
Offset: 0

Views

Author

Gus Wiseman, Aug 14 2020

Keywords

Examples

			The a(0) = 1 through a(2) = 5 chains:
  {1}  {2,1}  {12,1}
              {12,2,1}
              {12,3,1}
              {12,4,1}
              {12,4,2,1}
		

Crossrefs

A076954 can be used instead of A006939 (cf. A307895, A325337).
A336423 and A336571 are not restricted to A006939.
A336941 is the version not restricted by A130091.
A337075 is the version for factorials.
A074206 counts chains of divisors from n to 1.
A130091 lists numbers with distinct prime multiplicities.
A181796 counts divisors with distinct prime multiplicities.
A253249 counts chains of divisors.
A327498 gives the maximum divisor with distinct prime multiplicities.
A336422 counts divisible pairs of divisors, both in A130091.
A336424 counts factorizations using A130091.

Programs

  • Mathematica
    chern[n_]:=Product[Prime[i]^(n-i+1),{i,n}];
    chnstr[n_]:=If[n==1,1,Sum[chnstr[d],{d,Select[Most[Divisors[n]],UnsameQ@@Last/@FactorInteger[#]&]}]];
    Table[chnstr[chern[n]],{n,0,3}]

Formula

a(n) = A336423(A006939(n)) = A336571(A006939(n)).
Previous Showing 51-60 of 213 results. Next