cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 35 results. Next

A062977 Difference between largest and smallest positive exponent in prime factorization of n; a(1) = 0 by convention.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 2, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 1, 1, 0, 0, 3, 0, 1, 0, 1, 0, 2, 0, 2, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 1, 0, 0, 0, 3, 0, 0, 0, 1, 0, 0, 0, 2, 0, 1, 0, 1, 0, 0, 0, 4, 0, 1, 1, 0, 0, 0, 0, 2, 0
Offset: 1

Views

Author

Henry Bottomley, Jul 24 2001

Keywords

Examples

			a(24) = 2 since 24 = 2^3*3^1 and max(3,1) - min(3,1) = 3 - 1 = 2;
a(25) = 0 since 25 = 5^2 and max(2) - min(2) = 2 - 2 = 0.
		

Crossrefs

Cf. A072774 (positions of zeros), A059404 (of nonzeros).

Programs

  • Mathematica
    dlsp[n_]:=Module[{xp=FactorInteger[n][[All,2]]},Max[xp]-Min[xp]]; Join[ {0},Array[ dlsp,120]] (* Harvey P. Dale, Jan 28 2021 *)
  • PARI
    { for (n=1, 4000, if (n<2, M=m=0, f=factor(n)~; M=m=f[2, 1]; for (i=2, length(f), M=max(M, f[2, i]); m=min(m, f[2, i]))); write("b062977.txt", n, " ", M - m) ) } \\ Harry J. Smith, Aug 14 2009
    
  • PARI
    A062977(n) = if((1==n),0,n=(factor(n)[, 2]); vecmax(n)-vecmin(n)); \\ Antti Karttunen, Nov 17 2019

Formula

a(n) = A051903(n) - A051904(n).
a(A108951(n)) = A325226(n) = A001222(n) - A071178(n). - Antti Karttunen, Nov 17 2019
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = A033150 - 1 = 0.705211... . - Amiram Eldar, Jan 05 2024

A368713 The maximal exponent in the prime factorization of the nonsquarefree numbers.

Original entry on oeis.org

2, 3, 2, 2, 4, 2, 2, 3, 2, 3, 2, 5, 2, 3, 2, 2, 4, 2, 2, 2, 3, 3, 2, 2, 6, 2, 3, 2, 2, 4, 4, 2, 3, 2, 2, 5, 2, 2, 2, 3, 3, 4, 2, 2, 3, 2, 2, 3, 2, 7, 2, 3, 3, 2, 4, 2, 2, 2, 3, 2, 2, 5, 4, 2, 3, 2, 2, 2, 2, 4, 2, 3, 2, 3, 6, 2, 2, 3, 2, 2, 4, 2, 3, 2, 5, 2, 2, 3, 2, 2, 4
Offset: 1

Views

Author

Amiram Eldar, Jan 04 2024

Keywords

Comments

The terms of A051903 that are larger than 1.

Crossrefs

Similar sequences: A368710, A368711, A368712.

Programs

  • Mathematica
    s[n_] := Max @@ Last /@ FactorInteger[n]; s /@ Select[Range[250], !SquareFreeQ[#] &]
    (* or *)
    f[n_] := Module[{e = Max @@ FactorInteger[n][[;; , 2]]}, If[e > 1, e, Nothing]]; Array[f, 250]
  • PARI
    lista(kmax) = {my(e); for(k = 2, kmax, e = vecmax(factor(k)[,2]); if(e > 1, print1(e, ", ")));}

Formula

a(n) = A051903(A013929(n)).
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = (c * zeta(2) - 1)/(zeta(2) - 1) = 2.798673520766..., where c = 1.705211... is Niven's constant (A033150).

A372603 The maximal exponent in the prime factorization of the powerful part of n.

Original entry on oeis.org

0, 0, 0, 2, 0, 0, 0, 3, 2, 0, 0, 2, 0, 0, 0, 4, 0, 2, 0, 2, 0, 0, 0, 3, 2, 0, 3, 2, 0, 0, 0, 5, 0, 0, 0, 2, 0, 0, 0, 3, 0, 0, 0, 2, 2, 0, 0, 4, 2, 2, 0, 2, 0, 3, 0, 3, 0, 0, 0, 2, 0, 0, 2, 6, 0, 0, 0, 2, 0, 0, 0, 3, 0, 0, 2, 2, 0, 0, 0, 4, 4, 0, 0, 2, 0, 0, 0
Offset: 1

Views

Author

Amiram Eldar, May 07 2024

Keywords

Comments

First differs from A275812 at n = 36, and from A212172 at n = 37.

Crossrefs

Programs

  • Mathematica
    f[n_] := If[n == 1, 0, n]; a[n_] := f[Max[FactorInteger[n][[;; , 2]]]]; a[1] = 0; Array[a, 100]
  • PARI
    s(n) = if(n == 1, 0, n);
    a(n) = if(n>1, s(vecmax(factor(n)[,2])), 0);

Formula

a(n) = A051903(A057521(n)).
a(n) = A087156(A051903(n)).
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = 1 - 1/zeta(2) + Sum_{i>=2} (1 - 1/zeta(i)) = A033150 - A059956 = 1.09728403825134113562... .

A380264 a(n) is the numerator of the mean value of A051903(k) at the range k = 1..n.

Original entry on oeis.org

0, 1, 2, 1, 1, 1, 1, 5, 4, 13, 14, 4, 17, 9, 19, 23, 24, 13, 27, 29, 10, 31, 32, 35, 37, 19, 41, 43, 44, 3, 46, 51, 52, 53, 54, 14, 57, 29, 59, 31, 63, 32, 65, 67, 23, 35, 71, 25, 11, 79, 80, 41, 83, 43, 87, 45, 91, 46, 93, 19, 96, 97, 11, 105, 106, 107, 108, 55
Offset: 1

Views

Author

Amiram Eldar, Jan 18 2025

Keywords

Examples

			Fractions begin with 0, 1/2, 2/3, 1, 1, 1, 1, 5/4, 4/3, 13/10, 14/11, 4/3, ...
		

Crossrefs

Cf. A033150, A051903, A129132, A359071, A359072, A380265 (denominators).

Programs

  • Mathematica
    f[n_] := Max[FactorInteger[n][[;;, 2]]]; f[1] = 0; With[{m = 100}, Numerator[Accumulate[Array[f, m]] / Range[m]]]
  • PARI
    lista(nmax) = {my(s = 0); print1(0, ", "); for(n = 2, nmax, s += vecmax(factor(n)[,2]);  print1(numerator(s/n), ", "));}

Formula

a(n) = numerator((Sum_{k=1..n} A051903(k))/n).
a(n)/A380265(n) = A129132(n)/n.
Limit_{n->oo} a(n)/A380265(n) = c, where c is Niven's constant (A033150).
abs(a(n)/A380265(n) - c) <= 3*log_2(n)/sqrt(n).

A033151 Continued fraction for Niven's constant.

Original entry on oeis.org

1, 1, 2, 2, 1, 1, 4, 1, 1, 3, 4, 4, 8, 4, 1, 1, 2, 1, 1, 11, 1, 4, 2, 2, 1, 2, 1, 2, 2, 2, 1, 1, 1, 7, 14, 2, 1, 13, 2, 1, 6, 2, 3, 1, 1, 1, 5, 2, 2, 8, 29, 1, 6, 1, 18, 1, 3, 2, 1, 5, 1, 1, 1, 18, 1, 3, 1, 372, 3, 3, 1, 47, 2, 1, 6, 1, 5, 1, 4, 1, 2, 4, 2, 2, 1, 1, 2, 7, 1, 7, 1, 14, 6, 5, 1, 559, 1
Offset: 0

Views

Author

Keywords

Crossrefs

Cf. A033150 (decimal expansion).

Programs

  • Mathematica
    rd[n_] := rd[n] = RealDigits[ N[1 + Sum[1 - 1/Zeta[j], {j, 2, 2^n}], 105]][[1]]; rd[n = 4]; While[rd[n] =!= rd[n - 1], n++]; Niven = FromDigits[{rd[n], 1}]; ContinuedFraction[Niven, 100] (* Jean-François Alcover, Oct 30 2012 *)

Extensions

Offset changed by Andrew Howroyd, Jul 04 2024

A066301 a(n) = 0 if n is squarefree, otherwise 1 + a(n/rad(n)) where rad = A007947 (squarefree kernel).

Original entry on oeis.org

0, 0, 0, 1, 0, 0, 0, 2, 1, 0, 0, 1, 0, 0, 0, 3, 0, 1, 0, 1, 0, 0, 0, 2, 1, 0, 2, 1, 0, 0, 0, 4, 0, 0, 0, 1, 0, 0, 0, 2, 0, 0, 0, 1, 1, 0, 0, 3, 1, 1, 0, 1, 0, 2, 0, 2, 0, 0, 0, 1, 0, 0, 1, 5, 0, 0, 0, 1, 0, 0, 0, 2, 0, 0, 1, 1, 0, 0, 0, 3, 3, 0, 0, 1, 0, 0, 0, 2, 0, 1
Offset: 1

Views

Author

Reinhard Zumkeller, Jan 01 2002

Keywords

Comments

This sequence is not the same as A046660.

Examples

			a(24) = 1 + a(24/rad(24)) = 1 + a(24/6) = 1 + a(4) = 1 + (1+a(4/rad(4))) = 1 + (1+a(4/2)) = 2 + a(2) = 2 + 0 = 2.
		

Crossrefs

Programs

  • Haskell
    a066301 1 = 0
    a066301 n = a051903 n - 1  -- Reinhard Zumkeller, Jul 23 2013
  • Mathematica
    a[n_] := Max[FactorInteger[n][[;;, 2]]] - 1; Array[a, 100] (* Amiram Eldar, Jan 05 2024 *)
  • PARI
    a(n)=if(n>1, vecmax(factor(n)[,2])-1, 0) \\ Charles R Greathouse IV, Jul 15 2013
    

Formula

a(n) = A051903(n)-1 for n > 1, a(1) = 0.
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = A033150 - 1 = 0.705211... . - Amiram Eldar, Jan 05 2024

A157754 a(1) = 0, a(n) = lcm(A051904(n), A051903(n)) for n >= 2.

Original entry on oeis.org

0, 1, 1, 2, 1, 1, 1, 3, 2, 1, 1, 2, 1, 1, 1, 4, 1, 2, 1, 2, 1, 1, 1, 3, 2, 1, 3, 2, 1, 1, 1, 5, 1, 1, 1, 2, 1, 1, 1, 3, 1, 1, 1, 2, 2, 1, 1, 4, 2, 2, 1, 2, 1, 3, 1, 3, 1, 1, 1, 2, 1, 1, 2, 6, 1, 1, 1, 2, 1, 1, 1, 6, 1, 1, 2, 2, 1, 1, 1, 4, 4, 1, 1, 2, 1, 1, 1, 3, 1, 2, 1, 2, 1, 1, 1, 5, 1, 2, 2, 2
Offset: 1

Views

Author

Jaroslav Krizek, Mar 05 2009

Keywords

Comments

a(n) for n >= 2 equals LCM of minimum and maximum exponents in the prime factorization of n.
a(n) for n >= 2 deviates from A072411, first different term is a(360), a(360) = 3, A072411(360) = 6.

Examples

			For n = 12 = 2^2 * 3^1 we have a(12) = lcm(2,1) = 2.
For n = 144 = 2^4 * 3^2 we have a(144) = lcm(4,2) = 4.
		

Crossrefs

Programs

  • Mathematica
    Table[LCM @@ {Min@ #, Max@ #} - Boole[n == 1] &@ FactorInteger[n][[All, -1]], {n, 100}] (* Michael De Vlieger, Jul 12 2017 *)
  • PARI
    a(n) = if(n == 1, 0, my(e = factor(n)[,2]); lcm(vecmin(e), vecmax(e))); \\ Amiram Eldar, Sep 11 2024

Formula

a(1) = 0, a(p) = 1, a(pq) = 1, a(pq...z) = 1, a(p^k) = k, for p = primes (A000040), pq = product of two distinct primes (A006881), pq...z = product of k (k > 2) distinct primes p, q, ..., z (A120944), p^k = prime powers (A000961(n) for n > 1) k = natural numbers (A000027).
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = A033150. - Amiram Eldar, Sep 11 2024

A244000 Decimal expansion of the Bateman-Grosswald constant zeta(2/3)/zeta(2), a constant (negated) arising in the asymptotic evaluation of the number of square-full numbers (also called "powerful" numbers).

Original entry on oeis.org

1, 4, 8, 7, 9, 5, 0, 6, 6, 3, 5, 3, 2, 2, 7, 2, 6, 3, 1, 5, 9, 8, 7, 4, 9, 1, 1, 2, 5, 7, 8, 7, 1, 3, 4, 9, 8, 7, 9, 6, 1, 0, 8, 5, 3, 8, 1, 2, 1, 0, 4, 4, 2, 5, 1, 4, 2, 4, 6, 8, 8, 1, 7, 2, 8, 3, 5, 6, 1, 2, 9, 0, 2, 1, 7, 2, 2, 6, 0, 1, 1, 5, 7, 0, 1, 4, 2, 4, 3, 9, 8, 7, 9, 4, 5, 0, 8, 6, 8, 9, 5
Offset: 1

Views

Author

Jean-François Alcover, Jun 17 2014

Keywords

Examples

			-1.4879506635322726315987491125787134987961...
		

References

  • Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, Section 2.6 Niven's constant, p. 113.

Crossrefs

Cf. A001694, A033150, A059956 (analog for squarefree integers), A090699.

Programs

  • Mathematica
    RealDigits[ Zeta[2/3] / Zeta[2], 10, 101] // First

A375538 Numerator of the asymptotic mean over the positive integers of the maximum exponent in the prime factorization of the largest prime(n)-smooth divisor function.

Original entry on oeis.org

1, 13, 51227, 926908275845, 548123689541583443758024333411, 629375533747930240763697631488051776709110194920714685268467462860005271344878614119
Offset: 1

Views

Author

Amiram Eldar, Aug 19 2024

Keywords

Comments

The numbers of digits of the terms are 1, 2, 5, 12, 30, 84, 215, 537, 1237, 2930, 6775, 15484, 35185, ... .

Examples

			Fractions begins: 1, 13/10, 51227/36540, 926908275845/636617813832, 548123689541583443758024333411/369693143251781030056182487680, ...
For n = 1, prime(1) = 2, the "2-smooth numbers" are the powers of 2 (A000079), and the sequence that gives the exponent of the largest power of 2 that divides n is A007814, whose asymptotic mean is 1.
For n = 2, prime(2) = 3, the 3-smooth numbers are in A003586, and the sequence that gives the maximum exponent in the prime factorization of the largest 3-smooth divisor of n is A244417, whose asymptotic mean is 13/10.
		

Crossrefs

Cf. A033150, A375537, A375539 (denominators).
Cf. A375538 (numerators).

Programs

  • Mathematica
    d[k_, n_] := Product[1 - 1/Prime[i]^k, {i, 1, n}]; f[n_] := Sum[k * (d[k+1, n] - d[k, n]), {k, 1, Infinity}]; Numerator[Array[f, 6]]

Formula

Let f(n) = a(n)/A375539(n). Then:
f(n) = lim_{m->oo} (1/m) * Sum_{i=1..m} A375537(n, i).
f(n) = Sum_{k>=1} k * (d(k+1, prime(n)) - d(k, prime(n))), where d(k, p) = Product_{q prime <= p} (1 - 1/q^k).
Limit_{n->oo} f(n) = A033150.

A033152 Position of first occurrence of n in the continued fraction for Niven's constant.

Original entry on oeis.org

0, 2, 9, 6, 46, 40, 33, 12, 139, 251, 19, 334, 37, 34, 326, 184, 199, 54
Offset: 1

Views

Author

Keywords

Comments

The continued fraction expansion is indexed [a_0; a_1, a_2, a_3, ...];
Next term > 500. - Michel ten Voorde Jun 14 2003

Crossrefs

Programs

  • Mathematica
    rd[n_] := rd[n] = RealDigits[ N[1 + Sum[1 - 1/Zeta[j], {j, 2, 2^n}], 400]][[1]]; rd[n = 4]; While[rd[n] =!= rd[n-1], n++]; Niven = FromDigits[{rd[n], 1}]; A033151 = ContinuedFraction[Niven]; a[n_] := Position[A033151, n][[1, 1]]; Table[a[n], {n, 1, 18}] (* Jean-François Alcover, Oct 31 2012 *)

Formula

A033151(a(n)) = n. - Andrew Howroyd, Sep 11 2024

Extensions

More terms from Michel ten Voorde, Jun 14 2003
Terms decreased by 1 for consistency with offset change in A033151 by Andrew Howroyd, Sep 11 2024
Previous Showing 11-20 of 35 results. Next