cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 40 results. Next

A138811 Theta series of quadratic form x^2 + x*y + 11*y^2.

Original entry on oeis.org

1, 2, 0, 0, 2, 0, 0, 0, 0, 2, 0, 4, 0, 4, 0, 0, 2, 4, 0, 0, 0, 0, 0, 4, 0, 2, 0, 0, 0, 0, 0, 4, 0, 0, 0, 0, 2, 0, 0, 0, 0, 4, 0, 2, 4, 0, 0, 4, 0, 2, 0, 0, 4, 4, 0, 0, 0, 0, 0, 4, 0, 0, 0, 0, 2, 0, 0, 4, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4, 0, 2, 0, 4, 0, 0, 0
Offset: 0

Views

Author

Michael Somos, Mar 31 2008, Apr 05 2008

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).

Examples

			G.f. = 1 + 2*q + 2*q^4 + 2*q^9 + 4*q^11 + 4*q^13 + 2*q^16 + 4*q^17 + 4*q^23 + ...
		

Crossrefs

Cf. A035147.
Number of integer solutions to f(x,y) = n where f(x,y) is the principal binary quadratic form with discriminant d: A004016 (d=-3), A004018 (d=-4), A002652 (d=-7), A033715 (d=-8), A028609 (d=-11), A028641 (d=-19), this sequence (d=-43).

Programs

  • Magma
    A := Basis( ModularForms( Gamma1(43), 1), 87); A[1] + 2*A[2] + 2*A[5] + 2*A[10] + 4*A[12] + 4*A[14] + 2*A[17] + 4*A[18]; /* Michael Somos, Sep 07 2015 */
  • Mathematica
    a[ n_] := If[ n < 1, Boole[n == 0], 2 DivisorSum[ n, KroneckerSymbol[ -43, #] &]]; (* Michael Somos, Sep 07 2015 *)
    a[ n_] := SeriesCoefficient[ EllipticTheta[ 3, 0, q] EllipticTheta[ 3, 0, q^43] + EllipticTheta[ 2, 0, q] EllipticTheta[ 2, 0, q^43], {q, 0, n}]; (* Michael Somos, Sep 07 2015 *)
    Join[{1}, a[n_]:=If[n<0, 0, DivisorSum[n, KroneckerSymbol[-43, #]&]];
    2 Table[a[n], {n, 1, 100}]] (* Vincenzo Librandi, Sep 07 2018 *)
  • PARI
    {a(n) = if( n<1, n==0, sumdiv(n, d, kronecker(-43, d))*2)};
    
  • PARI
    {a(n) = if( n<0, 0, polcoeff( 1 + 2 * x * Ser(qfrep([2, 1; 1, 22], n, 1)), n))};
    
  • PARI
    a(n)=if(n, sumdivmult(n,d,kronecker(-43,d))*2, 0) \\ Charles R Greathouse IV, Nov 23 2021
    

Formula

Expansion of theta_3(q) * theta_3(q^43) + theta_2(q) * theta_2(q^43) in powers of q.
Expansion of phi(q) * phi(q^43) + 4 * q^11 * psi(q^2) * psi(q^86) in powers of q where phi(), psi() are Ramanujan theta functions.
Moebius transform is period 43 sequence [2, -2, -2, 2, -2, 2, -2, -2, 2, 2, 2, -2, 2, 2, 2, 2, 2, -2, -2, -2, 2, -2, 2, 2, 2, -2, -2, -2, -2, -2, 2, -2, -2, -2, 2, 2, -2, 2, -2, 2, 2, -2, 0, ...].
a(n) = 2*b(n) where b() is multiplicative with b(43^e) = 1, b(p^e) = e + 1 if Kronecker(-43, p) = 1, b(p^e) = (1 + (-1)^e) / 2 otherwise.
G.f. is a period 1 Fourier series which satisfies f(-1 / (43 t)) = 43^(1/2) (t/i) f(t) where q = exp(2 Pi i t).
a(4*n + 2) = a(9*n + 3) = a(9*n + 6) = 0. a(4*n) = a(9*n) = a(n).
G.f.: Sum_{i,j in Z} x^(i*i + i*j + 11*j*j).
a(n) = 2 * A035147(n) unless n = 0.
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = 2*Pi/sqrt(43) = 0.958176... . - Amiram Eldar, Nov 21 2023

A320234 Expansion of Product_{k=1..8} theta_3(q^k), where theta_3() is the Jacobi theta function.

Original entry on oeis.org

1, 2, 2, 6, 8, 10, 22, 26, 36, 58, 72, 96, 130, 164, 200, 268, 324, 376, 486, 552, 642, 796, 876, 992, 1198, 1294, 1436, 1682, 1794, 1964, 2268, 2428, 2556, 2980, 3116, 3304, 3876, 3940, 4252, 4896, 4996, 5348, 6164, 6260, 6668, 7686, 7808, 8120, 9378, 9490, 9762
Offset: 0

Views

Author

Seiichi Manyama, Oct 08 2018

Keywords

Comments

Also the number of integer solutions (a_1, a_2, ... , a_8) to the equation a_1^2 + 2*a_2^2 + ... + 8*a_8^2 = n.

Crossrefs

Product_{k=1..m} theta_3(q^k): A000122 (m=1), A033715 (m=2), A029594 (m=3), A320139 (m=4), A320231 (m=5), A320232 (m=6), A320233 (m=7), this sequence (m=8), A320241 (m=9), A320242(m=10), A320246 (m=12), A320247 (m=16).

A320231 Expansion of Product_{k=1..5} theta_3(q^k), where theta_3() is the Jacobi theta function.

Original entry on oeis.org

1, 2, 2, 6, 8, 10, 20, 20, 26, 38, 40, 48, 54, 60, 56, 80, 76, 60, 106, 76, 102, 132, 100, 128, 160, 174, 136, 210, 164, 164, 280, 160, 182, 256, 216, 232, 320, 204, 244, 408, 288, 288, 368, 316, 292, 518, 276, 264, 510, 310, 454, 480, 380, 408, 616, 524, 428, 656
Offset: 0

Views

Author

Seiichi Manyama, Oct 08 2018

Keywords

Comments

Also the number of integer solutions (a_1, a_2, ... , a_5) to the equation a_1^2 + 2*a_2^2 + ... + 5*a_5^2 = n.

Crossrefs

Product_{k=1..m} theta_3(q^k): A000122 (m=1), A033715 (m=2), A029594 (m=3), A320139 (m=4), this sequence (m=5), A320232 (m=6), A320233 (m=7), A320234 (m=8).
Cf. A320067.

A320232 Expansion of Product_{k=1..6} theta_3(q^k), where theta_3() is the Jacobi theta function.

Original entry on oeis.org

1, 2, 2, 6, 8, 10, 22, 24, 30, 50, 56, 68, 94, 100, 108, 156, 156, 156, 214, 196, 214, 292, 252, 248, 374, 330, 344, 486, 380, 440, 640, 548, 506, 752, 624, 656, 988, 644, 720, 1080, 872, 872, 1220, 876, 984, 1598, 1052, 1096, 1566, 1290, 1310, 1936, 1260, 1264, 2198
Offset: 0

Views

Author

Seiichi Manyama, Oct 08 2018

Keywords

Comments

Also the number of integer solutions (a_1, a_2, ... , a_6) to the equation a_1^2 + 2*a_2^2 + ... + 6*a_6^2 = n.

Crossrefs

Product_{k=1..m} theta_3(q^k): A000122 (m=1), A033715 (m=2), A029594 (m=3), A320139 (m=4), A320231 (m=5), this sequence (m=6), A320233 (m=7), A320234 (m=8).
Cf. A320067.

A320233 Expansion of Product_{k=1..7} theta_3(q^k), where theta_3() is the Jacobi theta function.

Original entry on oeis.org

1, 2, 2, 6, 8, 10, 22, 26, 34, 54, 68, 84, 114, 144, 156, 216, 256, 268, 350, 384, 414, 508, 564, 560, 686, 758, 736, 914, 966, 948, 1140, 1308, 1182, 1460, 1640, 1464, 1928, 2024, 1928, 2228, 2564, 2320, 2748, 3164, 2584, 3350, 3640, 3232, 3738, 4314, 3566, 4400
Offset: 0

Views

Author

Seiichi Manyama, Oct 08 2018

Keywords

Comments

Also the number of integer solutions (a_1, a_2, ... , a_7) to the equation a_1^2 + 2*a_2^2 + ... + 7*a_7^2 = n.

Crossrefs

Product_{k=1..m} theta_3(q^k): A000122 (m=1), A033715 (m=2), A029594 (m=3), A320139 (m=4), A320231 (m=5), A320232 (m=6), this sequence (m=7), A320234 (m=8).
Cf. A320067.

A082564 Expansion of eta(q)^2 * eta(q^2) / eta(q^4) in powers of q.

Original entry on oeis.org

1, -2, -2, 4, 2, 0, -4, 0, 2, -6, 0, 4, 4, 0, 0, 0, 2, -4, -6, 4, 0, 0, -4, 0, 4, -2, 0, 8, 0, 0, 0, 0, 2, -8, -4, 0, 6, 0, -4, 0, 0, -4, 0, 4, 4, 0, 0, 0, 4, -2, -2, 8, 0, 0, -8, 0, 0, -8, 0, 4, 0, 0, 0, 0, 2, 0, -8, 4, 4, 0, 0, 0, 6, -4, 0, 4, 4, 0, 0, 0, 0, -10, -4, 4, 0, 0, -4, 0, 4, -4, 0, 0, 0, 0, 0, 0, 4, -4, -2, 12, 2, 0, -8, 0
Offset: 0

Views

Author

Benoit Cloitre, May 05 2003

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
a(n) is nonzero if and only if n is in A002479. - Michael Somos, Dec 15 2011
Absolute values appear to give A033715 = 2*A002325.
Denoted by a_4(n) in Kassel and Reutenauer 2015. - Michael Somos, Jun 04 2015

Examples

			G.f. = 1 - 2*q - 2*q^2 + 4*q^3 + 2*q^4 - 4*q^6 + 2*q^8 - 6*q^9 + 4*q^11 + 4*q^12 + ...
		

Crossrefs

Programs

  • Magma
    A := Basis( ModularForms( Gamma1(32), 1), 105); A[1] - 2*A[2] - 2*A[3] + 4*A[4] + 2*A[5] - 4*A[7] + 2*A[9] - 6*A[10] + 4*A[12] + 4*A[13] - 4*A[16]; /* Michael Somos, Aug 29 2014 */
  • Mathematica
    a[ n_] := SeriesCoefficient[ QPochhammer[ q]^2 QPochhammer[ q^2] / QPochhammer[ q^4], {q, 0, n}]; (* Michael Somos, Aug 29 2014 *)
    a[ n_] := SeriesCoefficient[ EllipticTheta[ 4, 0, q] EllipticTheta[ 4, 0, q^2], {q, 0, n}]; (* Michael Somos, Aug 29 2014 *)
    a[ n_] := If[ n < 1, Boole[ n == 0], 2 (-1)^Quotient[ n + 1, 2] DivisorSum[ n, KroneckerSymbol[ -2, #] &]]; (* Michael Somos, Aug 29 2014 *)
  • PARI
    {a(n) = if( n<1, n==0, 2 * (-1)^((n+1) \ 2) * sumdiv( n, d, kronecker( -2, d)))}; /* Michael Somos, Mar 30 2007 */
    
  • PARI
    {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x + A)^2 * eta(x^2 + A) / eta(x^4 + A), n))};
    

Formula

Expansion of phi(-q) * phi(-q^2) in powers of q where phi() is a Ramanujan theta function. - Michael Somos, Mar 30 2007
Euler transform of period 4 sequence [ -2, -3, -2, -2, ...]. - Michael Somos, Mar 30 2007
G.f. is a period 1 Fourier series which satisfies f(-1 / (32 t)) = 2^(11/2) (t/i) g(t) where q = exp(2 Pi i t) and g() is the g.f. for A033761. - Michael Somos, Aug 29 2014
G.f.: Product_{k>0} (1 - x^k)^2 / (1 + x^(2*k)). - Michael Somos, Mar 30 2007
a(n) = -2 * A129134(n) unless n=0. - Michael Somos, Mar 30 2007
a(n) = (-1)^floor( (n+1)/2 ) * A033715(n). - Michael Somos, Aug 29 2014
a(2*n) = A133692(n). a(2*n + 1) = -2 * A125095(n). - Michael Somos, Aug 29 2014
a(3*n + 1) = -2 * A258747(n). a(3*n + 2) = -2 * A258764(n). - Michael Somos, Jun 09 2015

A133692 Expansion of phi(-q) * phi(q^2) in powers of q where phi() is a Ramanujan theta function.

Original entry on oeis.org

1, -2, 2, -4, 2, 0, 4, 0, 2, -6, 0, -4, 4, 0, 0, 0, 2, -4, 6, -4, 0, 0, 4, 0, 4, -2, 0, -8, 0, 0, 0, 0, 2, -8, 4, 0, 6, 0, 4, 0, 0, -4, 0, -4, 4, 0, 0, 0, 4, -2, 2, -8, 0, 0, 8, 0, 0, -8, 0, -4, 0, 0, 0, 0, 2, 0, 8, -4, 4, 0, 0, 0, 6, -4, 0, -4, 4, 0, 0, 0, 0
Offset: 0

Views

Author

Michael Somos, Sep 20 2007

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
a(n) is nonzero if and only if n is in A002479.

Examples

			G.f. = 1 - 2*q + 2*q^2 - 4*q^3 + 2*q^4 + 4*q^6 + 2*q^8 - 6*q^9 - 4*q^11 + ...
		

Crossrefs

Programs

  • Magma
    A := Basis( ModularForms( Gamma1(16), 1), 80); A[1] -2*A[2] +2*A[3] - 4*A[4] + 2*A[5] + 4*A[7]; /* Michael Somos, Aug 29 2014 */
  • Mathematica
    a[ n_] := If[ n < 1, Boole[n == 0], (-1)^n 2 DivisorSum[ n, KroneckerSymbol[ -2, #] &]]; (* Michael Somos, Oct 30 2015 *)
    a[ n_] := SeriesCoefficient[ EllipticTheta[ 4, 0, q] EllipticTheta[ 3, 0, q^2], {q, 0, n}]; (* Michael Somos, Aug 29 2014 *)
  • PARI
    {a(n) = if( n<1, n==0, (-1)^n * 2 * sumdiv(n, d, kronecker( -2, d)))};
    
  • PARI
    {a(n) = my(A); if ( n<0, 0, A = x * O(x^n); polcoeff( eta(x + A)^2 * eta(x^4 + A)^5 / (eta(x^2 + A)^3 * eta(x^8 + A)^2), n))};
    

Formula

Expansion of eta(q)^2 * eta(q^4)^5 / (eta(q^2)^3 * eta(q^8)^2) in powers of q.
Euler transform of period 8 sequence [ -2, 1, -2, -4, -2, 1, -2, -2, ...].
Moebius transform is period 16 sequence [ -2, 4, -2, 0, 2, 4, 2, 0, -2, -4, -2, 0, 2, -4, 2, 0, ...].
a(n) = -2 * b(n) where b(n) is multiplicative with b(2^e) = -1 if e>0, b(p^e) = (1 + (-1)^e) / 2 if p == 5, 7 (mod 8), b(p^e) = e + 1 if p == 1, 3 (mod 8).
G.f.: Product_{k>0} (1 - x^k)^2 * (1 + x^(2*k))^3 / (1 + x^(4*k))^2.
a(8*n + 5) = a(8*n + 7) = 0.
A133690 is the convolution square. a(n) = (-1)^n * A033715(n). a(2*n) = A033715(n). a(2*n + 1) = -2 * A113411(n).

A319822 Number of solutions to x^2 + 2*y^2 + 5*z^2 + 5*w^2 = n.

Original entry on oeis.org

1, 2, 2, 4, 2, 4, 12, 8, 18, 14, 4, 28, 12, 24, 32, 0, 34, 20, 14, 28, 4, 32, 44, 40, 28, 10, 40, 56, 64, 72, 8, 48, 66, 24, 68, 8, 46, 88, 60, 32, 4, 52, 64, 116, 76, 12, 64, 72, 60, 82, 26, 72, 104, 104, 88, 8, 112, 56, 136, 140, 8, 136, 96, 72, 98, 16, 72, 132
Offset: 0

Views

Author

Jianing Song, Sep 28 2018

Keywords

Comments

Ramanujan (1917) claimed that there are exactly 55 possible choice for a <= b <= c <= d such that a*x^2 + b*y^2 + c*z^2 + d*w^2 represents all natural numbers, but L. E. Dickson (1927) has pointed out that Ramanujan has overlooked the fact that (1, 2, 5, 5) does not represent 15. Consequently, there are only 54 forms. This sequence is related to the form (1, 2, 5, 5). As is proven, a(n) = 0 iff n = 15.
There are also many (a, b, c, d) other than this such that a*x^2 + b*y^2 + c*z^2 + d*w^2 represents all but finitely many natural numbers. For example, x^2 + y^2 + 5*z^2 + 5*w^2 represents all natural numbers except for 3 (cf. A236929); x^2 + y^2 + z^2 + d*w^2 (d == 2 (mod 4) or d = 9, 17, 25, 36, 68, 100 and some others) represents all natural numbers except for those of the form 4^i*(8*j + 7) and < d; x^2 + 2*y^2 + 6*z^2 + d*w^2 (d == 2 (mod 4) or d = 11, 19 and some others) represents all natural numbers except for those of the form 4^i*(8*j + 5) and < d.

Examples

			a(5) = 4 because 0^2 + 2*0^2 + 5*0^2 + 5*1^2 = 0^2 + 2*0^2 + 5*0^2 + 5*(-1)^2 = 0^2 + 2*0^2 + 5*1^2 + 5*0^2 = 0^2 + 2*0^2 + 5*(-1)^2 + 5*0^2 = 5 and these are the only four solutions to x^2 + 2*y^2 + 5*z^2 + 5*w^2 = 5.
		

References

  • J. H. Conway, Universal quadratic forms and the fifteen theorem, Contemporary Mathematics 272 (1999), 23-26.

Crossrefs

From Seiichi Manyama, Oct 07 2018: (Start)
54 possible choice:
k | a, b, c, d | Number of solutions
------+-----------------+--------------------
1 | 1, 1, 1, 1 | A000118
2 | 1, 1, 1, 2 | A236928
3 | 1, 1, 1, 3 | A236926
4 | 1, 1, 1, 4 | A236923
5 | 1, 1, 1, 5 | A236930
6 | 1, 1, 1, 6 | A236931
7 | 1, 1, 1, 7 | A236932
8 | 1, 1, 2, 2 | A097057
9 | 1, 1, 2, 3 | A320124
10 | 1, 1, 2, 4 | A320125
11 | 1, 1, 2, 5 | A320126
12 | 1, 1, 2, 6 | A320127
13 | 1, 1, 2, 7 | A320128
14 | 1, 1, 2, 8 | A320130
15 | 1, 1, 2, 9 | A320131
16 | 1, 1, 2, 10 | A320132
17 | 1, 1, 2, 11 | A320133
18 | 1, 1, 2, 12 | A320134
19 | 1, 1, 2, 13 | A320135
20 | 1, 1, 2, 14 | A320136
21 | 1, 1, 3, 3 | A034896
22 | 1, 1, 3, 4 | A272364
23 | 1, 1, 3, 5 | A320147
24 | 1, 1, 3, 6 | A320148
25 | 1, 2, 2, 2 | A320149
26 | 1, 2, 2, 3 | A320150
27 | 1, 2, 2, 4 | A236924
28 | 1, 2, 2, 5 | A320151
29 | 1, 2, 2, 6 | A320152
30 | 1, 2, 2, 7 | A320153
31 | 1, 2, 3, 3 | A320138
32 | 1, 2, 3, 4 | A320139
33 | 1, 2, 3, 5 | A320140
34 | 1, 2, 3, 6 | A033712
35 | 1, 2, 3, 7 | A320188
36 | 1, 2, 3, 8 | A320189
37 | 1, 2, 3, 9 | A320190
38 | 1, 2, 3, 10 | A320191
39 | 1, 2, 4, 4 | A320193
40 | 1, 2, 4, 5 | A320194
41 | 1, 2, 4, 6 | A320195
42 | 1, 2, 4, 7 | A320196
43 | 1, 2, 4, 8 | A033720
44 | 1, 2, 4, 9 | A320197
45 | 1, 2, 4, 10 | A320198
46 | 1, 2, 4, 11 | A320199
47 | 1, 2, 4, 12 | A320200
48 | 1, 2, 4, 13 | A320201
49 | 1, 2, 4, 14 | A320202
50 | 1, 2, 5, 6 | A320163
51 | 1, 2, 5, 7 | A320164
52 | 1, 2, 5, 8 | A320165
53 | 1, 2, 5, 9 | A320166
54 | 1, 2, 5, 10 | A033722
(End)

Programs

  • Maple
    JT := (k, n) -> JacobiTheta3(0, x^k)^n:
    A319822List := proc(len) series(JT(1,1)*JT(2,1)*JT(5,2), x, len+1);
    seq(coeff(%, x, j), j=0..len) end: A319822List(67); # Peter Luschny, Oct 01 2018
  • Mathematica
    CoefficientList[EllipticTheta[3, 0, q] EllipticTheta[3, 0, q^2] EllipticTheta[ 3, 0, q^5]^2 + O[q]^100, q] (* Jean-François Alcover, Jun 15 2019 *)
  • PARI
    A004018(n) = if(n, 4*sumdiv(n,d,kronecker(-4,d)), 1);
    A033715(n) = if(n, 2*sumdiv(n,d,kronecker(-2,d)), 1);
    a(n) = my(i=0); for(k=0, n\5, i+=A004018(k)*A033715(n-5*k)); i
    
  • PARI
    N=99; q='q+O('q^N);
    gf = (eta(q^2)*eta(q^4))^3*eta(q^10)^10/(eta(q)*eta(q^5)^2*eta(q^8)*eta(q^20)^2)^2;
    Vec(gf) \\ Altug Alkan, Oct 01 2018
    
  • Sage
    Q = DiagonalQuadraticForm(ZZ, [1, 2, 5, 5])
    Q.theta_series(68).list() # Peter Luschny, Oct 01 2018

Formula

a(n) = Sum_{k=0..floor(n/5)} A004018(k)*A033715(n-5*k).
G.f.: theta_3(q)*theta_3(q^2)*theta_3(q^5)^2, where theta_3() is the Jacobi theta function.

A320241 Expansion of Product_{k=1..9} theta_3(q^k), where theta_3() is the Jacobi theta function.

Original entry on oeis.org

1, 2, 2, 6, 8, 10, 22, 26, 36, 60, 76, 100, 142, 180, 220, 312, 376, 448, 602, 696, 834, 1056, 1204, 1392, 1734, 1942, 2188, 2654, 2898, 3248, 3860, 4180, 4540, 5376, 5704, 6176, 7242, 7532, 8184, 9444, 9868, 10480, 12168, 12544, 13348, 15554, 15832, 16816, 19430
Offset: 0

Views

Author

Seiichi Manyama, Oct 08 2018

Keywords

Comments

Also the number of integer solutions (a_1, a_2, ... , a_9) to the equation a_1^2 + 2*a_2^2 + ... + 9*a_9^2 = n.

Crossrefs

Product_{k=1..m} theta_3(q^k): A000122 (m=1), A033715 (m=2), A029594 (m=3), A320139 (m=4), A320231 (m=5), A320232 (m=6), A320233 (m=7), A320234 (m=8), this sequence (m=9), A320242 (m=10).
Cf. A320067.

A320242 Expansion of Product_{k=1..10} theta_3(q^k), where theta_3() is the Jacobi theta function.

Original entry on oeis.org

1, 2, 2, 6, 8, 10, 22, 26, 36, 60, 78, 104, 146, 192, 236, 332, 420, 500, 674, 816, 986, 1256, 1488, 1752, 2174, 2566, 2940, 3550, 4102, 4640, 5528, 6292, 6948, 8160, 9172, 10060, 11618, 12840, 13980, 15940, 17590, 18844, 21252, 23308, 24772, 27926, 30360, 31932
Offset: 0

Views

Author

Seiichi Manyama, Oct 08 2018

Keywords

Comments

Also the number of integer solutions (a_1, a_2, ... , a_10) to the equation a_1^2 + 2*a_2^2 + ... + 10*a_10^2 = n.

Crossrefs

Product_{k=1..m} theta_3(q^k): A000122 (m=1), A033715 (m=2), A029594 (m=3), A320139 (m=4), A320231 (m=5), A320232 (m=6), A320233 (m=7), A320234 (m=8), A320241 (m=9), this sequence (m=10).
Cf. A320067.
Previous Showing 11-20 of 40 results. Next