cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 41-45 of 45 results.

A360467 a(n) = Fibonacci(4*n+2) + 3*Fibonacci(2*n+1)^2.

Original entry on oeis.org

4, 20, 130, 884, 6052, 41474, 284260, 1948340, 13354114, 91530452, 627359044, 4299982850, 29472520900, 202007663444, 1384581123202, 9490060198964, 65045840269540, 445830821687810, 3055769911545124, 20944558559128052, 143556140002351234, 983948421457330580
Offset: 0

Views

Author

Keywords

Comments

Values of x + 3*y in solutions of x^2 = 5*y^2 - 4*y in positive integers. In the solutions, the values of x and y are given by Fibonacci(4*n + 2) and Fibonacci(2*n + 1)^2 respectively.
The above Diophantine equation arises out of the following problem regarding the subdivision of a square into four triangles of integer area. For n >= 1, the sequence gives the areas of the squares in the solutions (see illustration in Links). Two lines are drawn from a corner of a square to points on the opposing sides. A third line is added between the two points so that the square is divided into four triangles. The area of each triangle is required to be an integer and those of the right triangles to form an arithmetic progression with difference 1. The smallest right triangle by area is the one formed by the third line. In the solutions, the area of the inner triangle is given by Fibonacci(4*n + 2) and the total area of the three right triangles is 3*Fibonacci(2*n + 1)^2. The area of the square is then equal to a(n).

Examples

			a(2) = F(4*2+2) + 3*F(2*2 +1)^2 = F(10) + 3*F(5)^2 = 55 + 3*5^2 = 130.
a(4) = F(4*4+2) + 3*F(2*4 +1)^2 = F(18) + 3*F(9)^2 = 2584+ 3*34^2 = 6052.
G.f. = 4 + 20*x + 130*x^2 + 884*x^3 + 6052*x^4 + ... - _Michael Somos_, Mar 02 2023
		

Crossrefs

Programs

  • Maple
    a := proc(n) option remember; if n < 3 then return [4, 20, 130][n + 1] fi;
    a(n-3) - 8 * (a(n-2) - a(n-1)) end: seq(a(n), n = 0..22); # Peter Luschny, Feb 17 2023
  • Mathematica
    LinearRecurrence[{8, -8, 1}, {4, 20, 130}, 22] (* Amiram Eldar, Feb 17 2023 *)
    a[ n_] := 2 * Fibonacci[2*n+1] * Fibonacci[2*n+3]; (* Michael Somos, Mar 02 2023 *)
  • PARI
    Vec(2*(2 - 6*x + x^2)/((1 - x)*(1 - 7*x + x^2)) + O(x^25)) \\ Andrew Howroyd, Feb 16 2023
    
  • SageMath
    print([2*(lucas_number2(n+1, 7, 1) + 3) // 5 for n in range(23)]) # Peter Luschny, Feb 17 2023

Formula

a(n) = A033890(n) + 3*A081068(n)^2.
a(n) = Fibonacci(2*n+1)*(Fibonacci(2*n) + Fibonacci(2*n+2) + 3*Fibonacci(2*n+1)).
a(n) = 2*A064170(n+3).
G.f.: 2*(2 - 6*x + x^2)/((1 - x)*(1 - 7*x + x^2)). - Andrew Howroyd, Feb 16 2023
a(n) = a(n-3) - 8 * (a(n-2) - a(n-1)) for n >= 3. - Peter Luschny, Feb 17 2023
a(n) = a(-2-n) = 2*F(2*n+1) * F(2*n+3) = A295683(4*(n+1)) for all n in Z. - Michael Somos, Mar 02 2023

A081004 a(n) = Fibonacci(4n+2) + 1, or Fibonacci(2n+2)*Lucas(2n).

Original entry on oeis.org

2, 9, 56, 378, 2585, 17712, 121394, 832041, 5702888, 39088170, 267914297, 1836311904, 12586269026, 86267571273, 591286729880, 4052739537882, 27777890035289, 190392490709136, 1304969544928658, 8944394323791465, 61305790721611592, 420196140727489674
Offset: 0

Views

Author

R. K. Guy, Mar 01 2003

Keywords

References

  • Hugh C. Williams, Edouard Lucas and Primality Testing, John Wiley and Sons, 1998, p. 75.

Crossrefs

Cf. A000045 (Fibonacci numbers), A000032 (Lucas numbers), A056854 (first differences).

Programs

  • GAP
    List([0..30], n-> Fibonacci(4*n+2)+1); # G. C. Greubel, Jul 15 2019
  • Magma
    [Fibonacci(4*n+2)+1: n in [0..30]]; // Vincenzo Librandi, Apr 15 2011
    
  • Maple
    with(combinat): for n from 0 to 30 do printf(`%d,`,fibonacci(4*n+2)+1) od: # James Sellers, Mar 03 2003
  • Mathematica
    Table[Fibonacci[4n+2] +1, {n,0,30}] (* Wesley Ivan Hurt, Nov 20 2014 *)
  • PARI
    vector(30, n, n--; fibonacci(4*n+2)+1) \\ G. C. Greubel, Jul 15 2019
    
  • Sage
    [fibonacci(4*n+2)+1 for n in (0..30)] # G. C. Greubel, Jul 15 2019
    

Formula

a(n) = A033890(n)+1.
a(n) = 8*a(n-1) - 8*a(n-2) + a(n-3).
G.f.: (2-7*x)/((1-x)*(1-7*x+x^2)). - Colin Barker, Jun 24 2012

Extensions

More terms from James Sellers, Mar 03 2003

A159950 Dividends where Fibonacci products/sums yield integral quotients.

Original entry on oeis.org

240, 122522400, 137932073613734400, 342696507457909818131702784000, 1879127177606120717127879344567470740879360000, 22740756589119797763590969093409514524935686067027158720512000000
Offset: 1

Views

Author

Enoch Haga, Apr 27 2009

Keywords

Comments

In looking at the Fibonacci sequence I happened to notice that after each pair of terms >1 the product of terms divided by the sum of terms produced an integral quotient every other time. Example 240/20=12, integral.

Examples

			This table illustrates the alternating nature of the first three integral quotients: 1 1 2 3 -- 6/7=.85+ 5 8 -- 240/20=12 Integral 13 21 -- 65520/54=1213.33+ 34 55 -- 122522400/143=856800 Integral 89 144 -- 1570247078400/376=4176189038.29+ 233 377 -- 137932073613734400/986=139890541190400 Integral etc.
		

Crossrefs

Programs

  • Maple
    seq(mul(fibonacci(k), k = 1..4*n+2), n = 1..10); # Peter Bala, Nov 04 2021
  • UBASIC
    10 'Fibo 20 'R=SUM:S=PRODUCT 30 'T integral every other pair 40 A=1:S=1:print A;:S=S*1 50 B=1:print B;:S=S*B 60 C=A+B:print C;:R=R+C:S=S*C 70 D=B+C:print D;:R=R+D:R=R+2:print R:S=S*D:print S 80 T=S/R:if T=int(S/R) then print T:stop 90 A=C:B=D:R=R-2:goto 60

Formula

a(1)=240 because in the Fibonacci sequence up to 8 : 1 1 2 3 5 8, the product is 240 1*1*2*3*5*8. The sum is 1+1+2+3+5+8=20 (see A003481). The integral quotient is 12. From then on, every other pair produces an integral quotient.
a(n) = Product_{k = 1..4*n+2} Fibonacci(k) = A003266(4*n+2) = A052449(4*n+2) - 1. - Peter Bala, Nov 04 2021

A142880 a(n) = 7*a(n-3) - a(n-6).

Original entry on oeis.org

0, 1, 2, 3, 8, 13, 21, 55, 89, 144, 377, 610, 987, 2584, 4181, 6765, 17711, 28657, 46368, 121393, 196418, 317811, 832040, 1346269, 2178309, 5702887, 9227465, 14930352, 39088169, 63245986, 102334155, 267914296, 433494437, 701408733, 1836311903
Offset: 0

Views

Author

Roger L. Bagula and Gary W. Adamson, Sep 28 2008

Keywords

Crossrefs

Programs

  • Mathematica
    a[0] = 0; a[1] = 1;
    a[n_] := a[n] = If[Mod[n, 3] == 1, 2*a[n - 1] + a[n - 2], If[Mod[n, 3] == 0, a[n - 1] + a[n - 2], 2*a[n - 1] - a[n - 2]]];
    Table[a[n], {n, 0, 50}]
    LinearRecurrence[{0,0,7,0,0,-1},{0,1,2,3,8,13},40] (* Harvey P. Dale, Jul 17 2021 *)

Formula

G.f.: -x*(1+x)*(x^3 - 2*x^2 - x - 1) / ( 1 - 7*x^3 + x^6 ).
a(3n) = A033888(n).
a(3n+1) = A033890(n).
a(3n+2)= A033891(n).
a(n) = 2*a(n-1) + a(n-2) if n == 1 (mod 3).
a(n) = a(n-1) + a(n-2) if n == 0 (mod 3).
a(n) = 2*a(n-1) - a(n-2) if n == 2 (mod 3).

A351222 Decimal expansion of Sum_{k>=0} (-1)^k/Fibonacci(4*k+2).

Original entry on oeis.org

8, 9, 0, 8, 6, 7, 0, 2, 1, 9, 7, 2, 1, 1, 8, 2, 6, 0, 0, 4, 8, 8, 5, 1, 5, 2, 9, 2, 4, 1, 5, 6, 8, 0, 2, 0, 4, 3, 0, 5, 1, 2, 8, 4, 4, 1, 5, 8, 2, 0, 4, 3, 4, 5, 6, 6, 2, 0, 8, 0, 2, 7, 1, 9, 7, 5, 5, 2, 1, 5, 5, 6, 7, 2, 2, 1, 9, 9, 7, 5, 7, 6, 0, 5, 3, 1, 7, 8, 8, 3, 4, 9, 1, 6, 6, 2, 6, 7, 9, 5, 8, 5, 9, 2, 6
Offset: 0

Views

Author

Amiram Eldar, Feb 05 2022

Keywords

Examples

			0.89086702197211826004885152924156802043051284415820...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[NSum[(-1)^n/Fibonacci[4*n + 2], {n, 0, Infinity}, WorkingPrecision -> 1200], 10, 100][[1]]
  • PARI
    sumpos(k=0, (-1)^k/fibonacci(4*k+2)) \\ Michel Marcus, Feb 05 2022

Formula

Equals sqrt(5) * Sum_{k>=0} 1/Lucas(4*k+2) (Carlitz, 1967).
Previous Showing 41-45 of 45 results.