cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 88 results. Next

A074528 a(n) = 2^n + 3^n + 6^n.

Original entry on oeis.org

3, 11, 49, 251, 1393, 8051, 47449, 282251, 1686433, 10097891, 60526249, 362976251, 2177317873, 13062296531, 78368963449, 470199366251, 2821153019713, 16926788715971, 101560344351049, 609360902796251
Offset: 0

Views

Author

Robert G. Wilson v, Aug 23 2002

Keywords

Comments

From Álvar Ibeas, Mar 24 2015: (Start)
Number of isomorphism classes of 3-fold coverings of a connected graph with circuit rank n+1 [Kwak and Lee].
Number of orbits of the conjugacy action of Sym(3) on Sym(3)^(n+1) [Kwak and Lee, 2001].
(End)

References

  • J. H. Kwak and J. Lee, Enumeration of graph coverings, surface branched coverings and related group theory, in Combinatorial and Computational Mathematics (Pohang, 2000), ed. S. Hong et al., World Scientific, Singapore 2001, pp. 97-161. [Added by N. J. A. Sloane, Nov 12 2009]

Crossrefs

A246985 is essentially identical.
Third row of A160449, shifted.

Programs

Formula

From Mohammad K. Azarian, Dec 26 2008: (Start)
G.f.: 1/(1-2*x)+1/(1-3*x)+1/(1-6*x).
E.g.f.: exp(2*x) + exp(3*x) + exp(6*x). (End)
a(n) = 11*a(n-1) - 36*a(n-2) + 36*a(n-3). - Wesley Ivan Hurt, Aug 21 2020

A074506 a(n) = 1^n + 3^n + 4^n.

Original entry on oeis.org

3, 8, 26, 92, 338, 1268, 4826, 18572, 72098, 281828, 1107626, 4371452, 17308658, 68703188, 273218426, 1088090732, 4338014018, 17309009348, 69106897226, 276040168412, 1102998412178, 4408506864308, 17623567104026
Offset: 0

Views

Author

Robert G. Wilson v, Aug 23 2002

Keywords

Crossrefs

Programs

  • Mathematica
    Table[1^n + 3^n + 4^n, {n, 0, 22}]
    LinearRecurrence[{8,-19,12},{3,8,26},30] (* Harvey P. Dale, May 12 2025 *)

Formula

a(n) = 7*a(n-1) - 12*a(n-2) + 6 with a(0)=3, a(1)=8. - Vincenzo Librandi, Jul 19 2010
a(n) = 8*a(n-1) - 19*a(n-2) + 12*a(n-3). - R. J. Mathar, Jul 18 2010
From Mohammad K. Azarian, Dec 26 2008: (Start)
G.f.: 1/(1-x) + 1/(1-3*x) + 1/(1-4*x).
E.g.f.: e^x + e^(3*x) + e^(4*x). (End)

A074526 a(n) = 2^n + 3^n + 4^n.

Original entry on oeis.org

3, 9, 29, 99, 353, 1299, 4889, 18699, 72353, 282339, 1108649, 4373499, 17312753, 68711379, 273234809, 1088123499, 4338079553, 17309140419, 69107159369, 276040692699, 1102999460753, 4408508961459, 17623571298329
Offset: 0

Views

Author

Robert G. Wilson v, Aug 23 2002

Keywords

Crossrefs

Programs

  • Magma
    [2^n + 3^n + 4^n: n in [0..25]]; // Vincenzo Librandi, Jun 11 2011
  • Mathematica
    Table[2^n + 3^n + 4^n, {n, 0, 23}]
    LinearRecurrence[{9,-26,24},{3,9,29},30] (* Harvey P. Dale, Jun 14 2022 *)

Formula

From Mohammad K. Azarian, Dec 26 2008: (Start)
G.f.: 1/(1-2*x)+1/(1-3*x)+1/(1-4*x).
E.g.f.: exp(2*x)+exp(3*x)+exp(4*x). (End)

A034661 Sum of n-th powers of divisors of 18.

Original entry on oeis.org

6, 39, 455, 6813, 112931, 1956669, 34591115, 617285253, 11064693731, 198756808749, 3574014537275, 64300154115093, 1157115988280531, 20825519793796029, 374836322743499435, 6746846977808919333
Offset: 0

Views

Author

Keywords

Programs

  • Magma
    [DivisorSigma(n, 18): n in [0..20]]; // Bruno Berselli, Apr 05 2013 (improved MAGMA code by Vincenzo Librandi, Apr 17 2014)
  • Mathematica
    Join[{6}, LinearRecurrence[{39, -533, 3285, -9594, 12636, -5832}, {39, 455, 6813, 112931, 1956669, 34591115}, 15]] (* Bruno Berselli, Apr 05 2013 *)
    Table[(2^n + 1) (3^n + 9^n + 1), {n, 0, 15}] (* Bruno Berselli, Apr 05 2013 *)
    Total[#^Range[0, 20]&/@Divisors[18]] (* Vincenzo Librandi, Apr 17 2014 *)
  • Sage
    [sigma(18,n)for n in range(0,16)] # [Zerinvary Lajos, Jun 04 2009]
    

Formula

From Philippe Deléham, Apr 04 2013: (Start)
G.f.: 1/(1-x) + 1/(1-2*x) + 1/(1-3*x) + 1/(1-6*x) + 1/(1-9*x) + 1/(1-18*x).
a(n) = A000051(n)*A034513(n) = (2^n+1)*(3^n+9^n+1).
a(n) = 39*a(n-1) -533*a(n-2) +3285*a(n-3) -9594*a(n-4) +12636*a(n-5) -5832*a(n-6) with n>6, a(0)=6, a(1)=39, a(2)=455, a(3)=6813, a(4)= 112931, a(5)=1956669, a(6)=34591115. (End)

A074502 a(n) = 1^n + 2^n + 6^n.

Original entry on oeis.org

3, 9, 41, 225, 1313, 7809, 46721, 280065, 1679873, 10078209, 60467201, 362799105, 2176786433, 13060702209, 78364180481, 470185017345, 2821109972993, 16926659575809, 101559956930561, 609359740534785, 3656158441111553
Offset: 0

Views

Author

Robert G. Wilson v, Aug 23 2002

Keywords

Comments

From Jonathan Vos Post, Apr 16 2005: (Start)
Primes in this sequence include: a(2) = 41, a(10) = 60467201, a(18) = 101559956930561, a(34) = 286511799958070449017978881, a(58) = 1357602166130257152481187563448636039086735361.
Semiprimes in this sequence include: a(1) = 9 = 3^2, a(4) = 1313 = 13 * 101, a(6) = 46721 = 19 * 2459, a(8) = 1679873 = 13 * 129221, a(12) = 2176786433 = 19 * 114567707, a(13) = 13060702209 = 3 * 4353567403, a(28) = 6140942214465083932673 = 13 * 472380170343467994821, a(29) = 36845653286789429854209 = 3 * 12281884428929809951403, a(72) = 106387358923716524807713475752456398462534338499504504833 = 59670762632990981 * 1782905969847563299479030657520813855693. (End)

Crossrefs

Programs

  • Mathematica
    Table[1^n + 2^n + 6^n, {n, 0, 20}]
    LinearRecurrence[{9,-20,12},{3,9,41},30] (* Harvey P. Dale, Aug 15 2017 *)

Formula

G.f.: 1/(1-x)+1/(1-2*x)+1/(1-6*x). E.g.f.: e^x+e^(2*x)+e^(6*x). [Mohammad K. Azarian, Dec 26 2008]
a(n) = 8*a(n-1) - 12*a(n-2) + 5, n> 1. [Gary Detlefs, Jun 21 2010]

A074515 a(n) = 1^n + 4^n + 9^n.

Original entry on oeis.org

3, 14, 98, 794, 6818, 60074, 535538, 4799354, 43112258, 387682634, 3487832978, 31385253914, 282446313698, 2541932937194, 22877060890418, 205892205836474, 1853024483819138, 16677198879535754, 150094704016475858
Offset: 0

Views

Author

Robert G. Wilson v, Aug 23 2002

Keywords

Crossrefs

Programs

  • Mathematica
    Table[1^n + 4^n + 9^n, {n, 0, 20}]
    LinearRecurrence[{14,-49,36},{3,14,98},30] (* Harvey P. Dale, Aug 06 2013 *)
  • Python
    def a(n): return 1 + 4**n + 9**n
    print([a(n) for n in range(19)]) # Michael S. Branicky, Mar 14 2021

Formula

From Mohammad K. Azarian, Dec 26 2008: (Start)
G.f.: 1/(1-x) + 1/(1-4*x) + 1/(1-9*x).
E.g.f.: e^x + e^(4*x) + e^(9*x). (End)
a(n) = 13*a(n-1) - 36*a(n-2) + 24 with a(0)=3, a(1)=14. - Vincenzo Librandi, Jul 21 2010

A074535 a(n) = 2^n + 4^n + 8^n.

Original entry on oeis.org

3, 14, 84, 584, 4368, 33824, 266304, 2113664, 16843008, 134480384, 1074791424, 8594130944, 68736258048, 549822930944, 4398314962944, 35185445863424, 281479271743488, 2251816993685504, 18014467229220864, 144115462954287104
Offset: 0

Views

Author

Robert G. Wilson v, Aug 23 2002

Keywords

Comments

Number of monic irreducible polynomials of degree 1 in GF(2^n)[x,y,z]. - Max Alekseyev, Jan 23 2006

Crossrefs

Programs

  • Magma
    [2^n + 4^n + 8^n: n in [0..25]]; // Vincenzo Librandi, Jun 11 2011
    
  • Mathematica
    Table[2^n + 4^n + 8^n, {n, 0, 20}]
  • Python
    def a(n): return 2**n + 4**n + 8**n
    print([a(n) for n in range(20)]) # Michael S. Branicky, Mar 14 2021

Formula

G.f.: 1/(1-2*x)+1/(1-4*x)+1/(1-8*x). E.g.f.: exp(2*x)+exp(4*x)+exp(8*x). [Mohammad K. Azarian, Dec 26 2008]
Let A=[1, 1, 1;2, 0, -2;1, -1, 1], the 3 X 3 Krawtchouk matrix. Then a(n)=trace((A*A')^n). - Paul Barry, Sep 18 2004

A074579 a(n) = 6^n + 8^n + 9^n.

Original entry on oeis.org

3, 23, 181, 1457, 11953, 99593, 840241, 7160057, 61503553, 531715913, 4620992401, 40333791257, 353325795553, 3104682336233, 27353203130161, 241545689168057, 2137316275469953, 18945908172796553, 168210593763149521
Offset: 0

Views

Author

Robert G. Wilson v, Aug 23 2002

Keywords

Crossrefs

Programs

  • Magma
    [6^n + 8^n + 9^n: n in [0..20]]; // Vincenzo Librandi, May 20 2011
  • Mathematica
    Table[6^n + 8^n + 9^n, {n, 0, 20}]
    LinearRecurrence[{23,-174,432},{3,23,181},30] (* Harvey P. Dale, Sep 20 2016 *)

Formula

From Mohammad K. Azarian, Dec 26 2008: (Start)
G.f.: 1/(1-6*x) + 1/(1-8*x) + 1/(1-9*x).
E.g.f.: e^(6*x) + e^(8*x) + e^(9*x). (End)
a(n) = 23*a(n-1)-174*a(n-2)+432*a(n-3). - Wesley Ivan Hurt, Apr 17 2022

A224384 a(n) = 1 + 17^n.

Original entry on oeis.org

2, 18, 290, 4914, 83522, 1419858, 24137570, 410338674, 6975757442, 118587876498, 2015993900450, 34271896307634, 582622237229762, 9904578032905938, 168377826559400930, 2862423051509815794, 48661191875666868482, 827240261886336764178, 14063084452067724991010
Offset: 0

Views

Author

Philippe Deléham, Apr 05 2013

Keywords

Comments

Sum of n-th powers of divisors of 17.

Crossrefs

Programs

Formula

a(n) = A001026(n) + 1.
G.f.: 1/(1-x) + 1/(1-17*x).
E.g.f.: exp(x) + exp(17*x).
a(n) = 18*a(n-1) - 17*a(n-2) with a(0) = 2, a(1) = 18.

A074508 a(n) = 1^n + 3^n + 6^n.

Original entry on oeis.org

3, 10, 46, 244, 1378, 8020, 47386, 282124, 1686178, 10097380, 60525226, 362974204, 2177313778, 13062288340, 78368947066, 470199333484, 2821152954178, 16926788584900, 101560344088906, 609360902271964
Offset: 0

Views

Author

Robert G. Wilson v, Aug 23 2002

Keywords

Crossrefs

Programs

  • Mathematica
    Table[1^n + 3^n + 6^n, {n, 0, 20}]

Formula

G.f.: 1/(1-x)+1/(1-3*x)+1/(1-6*x). E.g.f.: e^x+e^(3*x)+e^(6*x). [Mohammad K. Azarian, Dec 26 2008]
a(n) = 9*a(n-1) - 18*a(n-2) + 10, n>1. [Gary Detlefs, Jun 21 2010]
Previous Showing 11-20 of 88 results. Next