cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 38 results. Next

A137389 a(n) = 2^prime(n) + 2^prime(n+1).

Original entry on oeis.org

12, 40, 160, 2176, 10240, 139264, 655360, 8912896, 545259520, 2684354560, 139586437120, 2336462209024, 10995116277760, 149533581377536, 9147936743096320, 585467951558164480, 2882303761517117440, 149879795598890106880, 2508757194024499019776, 11805916207174113034240
Offset: 1

Views

Author

Max Sills, Apr 10 2008

Keywords

Examples

			a(3) = 160 because 2^5 + 2^7 = 160.
		

Crossrefs

Programs

Formula

a(n) = A034785(n) + A034785(n+1). [R. J. Mathar, Jun 15 2009]
a(n) = 4*A137781(n). - Wesley Ivan Hurt, Mar 27 2015

Extensions

More terms from N. J. A. Sloane, Apr 10 2008

A137781 a(n) = (2^prime(n) + 2^prime(n+1)) / 4.

Original entry on oeis.org

3, 10, 40, 544, 2560, 34816, 163840, 2228224, 136314880, 671088640, 34896609280, 584115552256, 2748779069440, 37383395344384, 2286984185774080, 146366987889541120, 720575940379279360, 37469948899722526720, 627189298506124754944
Offset: 1

Views

Author

Keywords

Comments

Note that 4 is 2^prime(1).

Crossrefs

Programs

  • Magma
    [(2^NthPrime(n) + 2^NthPrime(n+1)) / 4: n in [1..20]]; // Vincenzo Librandi, Mar 28 2015
    
  • Maple
    A137781:=n->(2^ithprime(n)+2^ithprime(n+1))/4: seq(A137781(n), n=1..20); # Wesley Ivan Hurt, Mar 27 2015
  • Mathematica
    Table[(2^Prime[n] + 2^Prime[n + 1])/4, {n, 20}] (* Wesley Ivan Hurt, Mar 27 2015 *)
    (2^#[[1]]+2^#[[2]])/4&/@Partition[Prime[Range[20]],2,1] (* Harvey P. Dale, Dec 21 2019 *)
  • PARI
    vector(15,n,(2^prime(n)+2^prime(n+1))/4) \\ Derek Orr, Mar 29 2015

Formula

From Wesley Ivan Hurt, Mar 27 2015: (Start)
a(n) = A137389(n)/4.
a(n) = (A034785(n) + A034785(n+1))/4. (End)

A157413 Decimal expansion of sum_{p = primes = A000040} 1/(p*2^p).

Original entry on oeis.org

1, 7, 4, 0, 8, 7, 0, 7, 1, 7, 6, 0, 9, 7, 9, 3, 6, 2, 4, 7, 1, 9, 9, 3, 3, 1, 6, 6, 2, 1, 5, 5, 4, 4, 4, 2, 6, 5, 8, 7, 4, 9, 5, 0, 0, 0, 8, 1, 0, 3, 3, 0, 6, 8, 4, 0, 1, 6, 1, 4, 8, 1, 1, 9, 9, 4, 9, 8, 8, 3, 2, 9, 0, 2, 0, 7, 2, 4, 5, 5, 3, 9, 2, 4, 2, 1, 5, 0, 7, 9, 1, 8, 6, 9, 8, 2, 0, 7, 3, 0, 8, 2, 3, 0, 4
Offset: 0

Views

Author

R. J. Mathar, Feb 28 2009

Keywords

Examples

			0.174087071760979362471993... = 1/(2*2^2)+1/(3*2^3)+1/(5*2^5)+1/(7*2^7)+... = sum_{i>=1} 1/(A000040(i)*A034785(i)).
		

Formula

A002162 = sum_{n>=1} 1/(n*2^n) = 1/2 + this_constant_here + A157414 + equivalent terms of higher order k-almost primes.

A247938 Sum of divisors of 2^prime(n)-1.

Original entry on oeis.org

4, 8, 32, 128, 2160, 8192, 131072, 524288, 8567136, 539922240, 2147483648, 138055271872, 2199187780272, 8817412930560, 140828559963840, 9008745449302368, 576463955735383776, 2305843009213693952, 147573953351708377936, 2361193635521975063040
Offset: 1

Views

Author

Vincenzo Librandi, Sep 27 2014

Keywords

Comments

b-file computed with factorizations in Wagstaff link. a(167) corresponding to 2^991-1 is currently the first unknown term. - Jens Kruse Andersen, Sep 28 2014
Conjecture: a(n)/2^prime(n) reaches its maximum value 135/128 at n = 5. - Jianing Song, Dec 31 2022

References

  • R. Bojanić, Asymptotic evaluations of the sum of divisors of certain numbers (in Serbo-Croatian), Bull. Soc. Math.-Phys, R.P. Macédoine, Vol. 5 (1954), pp. 5-15.
  • József Sándor, Dragoslav S. Mitrinovic and Borislav Crstici, Handbook of Number Theory I, Springer Science & Business Media, 2005, Chapter III, p. 96.

Crossrefs

Subsequence of A075708.

Programs

  • Magma
    [SumOfDivisors(2^p-1): p in PrimesUpTo(100)];
    
  • Maple
    with(numtheory): A247938:=n->sigma(2^ithprime(n)-1): seq(A247938(n), n=1..20); # Wesley Ivan Hurt, Sep 27 2014
  • Mathematica
    Table[DivisorSigma[1, 2^Prime[n]-1], {n, 30}]
  • PARI
    vector(50,n,sigma(2^prime(n)-1)) \\ Derek Orr, Sep 27 2014

Formula

a(n) = A000203(A001348(n)). - Michel Marcus, Sep 27 2014
Limit_{n->oo} a(n)/A001348(n) = 1 (Bojanić, 1954). - Amiram Eldar, Mar 04 2021

A269327 a(n) = 7^prime(n).

Original entry on oeis.org

49, 343, 16807, 823543, 1977326743, 96889010407, 232630513987207, 11398895185373143, 27368747340080916343, 3219905755813179726837607, 157775382034845806615042743, 18562115921017574302453163671207, 44567640326363195900190045974568007
Offset: 1

Views

Author

Emre APARI, Feb 23 2016

Keywords

Examples

			The second prime is 3, hence a(2) = 7^3 = 343.
The third prime is 5, hence a(3) = 7^5 = 16807.
		

Crossrefs

Programs

Formula

a(n) = 7^A000040(n).
Sum_{n>=1} 1/a(n) = A132822. - Amiram Eldar, Aug 11 2020

A346173 Decimal expansion of Sum_{k>=1} prime(k)/2^prime(k).

Original entry on oeis.org

1, 0, 9, 3, 0, 6, 4, 2, 5, 7, 7, 0, 2, 5, 0, 7, 1, 6, 5, 4, 0, 2, 5, 8, 5, 9, 5, 2, 6, 9, 6, 7, 6, 3, 6, 8, 2, 9, 5, 5, 4, 7, 5, 9, 6, 5, 4, 0, 1, 2, 1, 5, 0, 6, 4, 0, 2, 7, 7, 2, 0, 3, 3, 5, 3, 0, 1, 2, 2, 4, 7, 5, 8, 8, 1, 4, 8, 9, 0, 0, 5, 8, 2, 5, 4, 0, 1, 1, 1, 2, 9, 8, 3, 4, 5, 7, 5, 4, 7, 6
Offset: 1

Views

Author

Amiram Eldar, Jul 08 2021

Keywords

Comments

This constant is irrational (Hančl and Tijdeman, 2004).

Crossrefs

Programs

  • Mathematica
    RealDigits[Sum[Prime[n]/2^Prime[n], {n, 1, 100}], 10, 100][[1]]
  • PARI
    suminf(k=1, prime(k)/2^prime(k)) \\ Michel Marcus, Jul 09 2021

Formula

1.09306425770250716540258595269676368295547596540121...

A135173 a(n) = 5^p - 3^p - 2^p, where p = prime(n).

Original entry on oeis.org

12, 90, 2850, 75810, 48648930, 1219100610, 762810181890, 19072323542370, 11920834803510690, 186264446292181467330, 4656612255401848810530, 72759575691550215703252290, 45474735052173413319557911170, 1136868376887903321203168728290, 710542735733511371371429275935010
Offset: 1

Views

Author

Omar E. Pol, Nov 25 2007

Keywords

Examples

			a(4) = 75810 because the 4th prime number is 7, 5^7 = 78125, 3^7 = 2187, 2^7 = 128 and 78125-2187-128 = 75810.
		

Crossrefs

Cf. A034785 (2^p), A057901 (3^p), A057902 (5^p).

Programs

Formula

a(n) = 5^p - 3^p - 2^p, with p = A000040(n).
a(n) = A057902(n) - A057901(n) - A034785(n). - Michel Marcus, Jun 14 2014

Extensions

More terms from Vincenzo Librandi, Dec 14 2010

A135174 a(n) = 5^prime(n) - 3^prime(n) + 2^prime(n).

Original entry on oeis.org

20, 106, 2914, 76066, 48653026, 1219116994, 762810444034, 19072324590946, 11920834820287906, 186264446293255209154, 4656612255406143777826, 72759575691550490581159234, 45474735052173417717604422274, 1136868376887903338795354772706, 710542735733511371652904252645666
Offset: 1

Views

Author

Omar E. Pol, Nov 25 2007

Keywords

Examples

			a(4)=76066 because the 4th prime number is 7, 5^7=78125, 3^7=2187, 2^7=128 and 78125-2187+128=76066.
		

Crossrefs

Cf. A000040.
Cf. 2^p: A034785; 3^p: A057901; 5^p: A057902.

Programs

  • Magma
    [5^p-3^p+2^p: p in PrimesUpTo(100)]; // Vincenzo Librandi, Dec 14 2010
  • Mathematica
    Table[5^p-3^p+2^p,{p,Prime[Range[20]]}] (* Harvey P. Dale, Dec 12 2013 *)

Formula

a(n)= 5^A000040(n) - 3^A000040(n) + 2^A000040(n).

Extensions

More terms from Vincenzo Librandi, Dec 14 2010

A135176 5^p + 3^p + 2^p, where p = prime(n).

Original entry on oeis.org

38, 160, 3400, 80440, 49007320, 1222305640, 763068724360, 19074649113880, 11921023106645560, 186264583554009938920, 4656613490752936345720, 72759576592118302363153960, 45474735125119410471945995080, 1136868377544417273584428927960, 710542735786689000370819259221240
Offset: 1

Views

Author

Omar E. Pol, Nov 25 2007

Keywords

Examples

			a(4)=80440 because the 4th prime number is 7, 5^7=78125, 3^7=2187, 2^7=128 and 78125+2187+128=80440.
		

Crossrefs

Cf. 2^p: A034785. 3^p: A057901. 2^5: A057902.

Programs

  • Magma
    [5^p+3^p+2^p: p in PrimesUpTo(100)]; // Vincenzo Librandi Dec 14 2010
  • Mathematica
    Table[5^p + 3^p + 2^p, {p, Prime[Range[20]]}] (* Vincenzo Librandi, May 24 2014 *)

Formula

p=A000040(n): a(n)= 5^p + 3^p + 2^p.

Extensions

More terms from Vincenzo Librandi, Dec 14 2010

A166743 a(n) = (2^p - p^2 - 1)/6 where p = prime(n).

Original entry on oeis.org

1, 13, 321, 1337, 21797, 87321, 1398013, 89478345, 357913781, 22906492017, 366503875645, 1466015503393, 23456248058853, 1501199875789697, 96076792050570001, 384307168202281705, 24595658764946068073
Offset: 3

Views

Author

Tanin (Mirza Sabbir Hossain Beg) (mirzasabbirhossainbeg(AT)yahoo.com), Oct 21 2009

Keywords

Crossrefs

Programs

  • Maple
    A166743 := proc(n) p := ithprime(n) ; (2^p-p^2-1)/6 ; end: seq(A166743(n),n=3..20) ; # R. J. Mathar, Oct 25 2009
  • Mathematica
    Table[(2^p-p^2-1)/6,{p,Prime[Range[3,20]]}] (* Harvey P. Dale, May 16 2020 *)

Formula

a(n) = (A034785(n) - A066872(n))/6. - R. J. Mathar, Oct 25 2009

Extensions

Missing exponentiation signs inserted in the definition by R. J. Mathar, Oct 25 2009
Corrected by D. S. McNeil, Aug 20 2010
Previous Showing 21-30 of 38 results. Next