A049645 Numbers k such that the square of the number of divisors of k divides the sum of the divisors of k.
1, 3, 7, 11, 19, 21, 23, 31, 33, 35, 43, 47, 57, 59, 62, 67, 69, 71, 77, 79, 83, 91, 93, 94, 103, 105, 107, 115, 119, 127, 129, 131, 133, 139, 141, 151, 155, 158, 161, 163, 167, 177, 179, 186, 189, 191, 199, 201, 203, 209, 211, 213, 217, 223
Offset: 1
Keywords
References
- Richard G. Guy, Unsolved Problems in Number Theory, 3rd ed., Springer, 2004, chapter 2, p. 76.
- József Sándor, Dragoslav S. Mitrinovic, Borislav Crstici, Handbook of Number Theory I, Springer Science & Business Media, 2005, chapter III, section 51, page 119.
Links
- G. C. Greubel, Table of n, a(n) for n = 1..5000
- Paul T. Bateman, Paul Erdős, Carl Pomerance and E.G. Straus, The arithmetic mean of the divisors of an integer, in Marvin I. Knopp (ed.), Analytic Number Theory, Proceedings of a Conference Held at Temple University, Philadelphia, May 12-15, 1980, Lecture Notes in Mathematics, Vol. 899, Springer, Berlin - New York, 1981, pp. 197-220, alternative link.
Programs
-
Magma
[k:k in [1..230]| DivisorSigma(1,k) mod (DivisorSigma(0,k))^2 eq 0]; // Marius A. Burtea, Jan 16 2020
-
Maple
with(numtheory): t := [ ]: f := [ ]: for n from 1 to 500 do if sigma(n) mod sigma[ 0 ](n)^2 = 0 then t := [ op(t), n ] else f := [ op(f), n ]; fi; od: t;
-
Mathematica
Select[Range[1, 250], Mod[DivisorSigma[1, #], DivisorSigma[0, #]^2] == 0 &] (* G. C. Greubel, Dec 06 2017 *)
-
PARI
isok(n) = sigma(n) % numdiv(n)^2 == 0; \\ Michel Marcus, Dec 07 2017
Comments