cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 32 results. Next

A049645 Numbers k such that the square of the number of divisors of k divides the sum of the divisors of k.

Original entry on oeis.org

1, 3, 7, 11, 19, 21, 23, 31, 33, 35, 43, 47, 57, 59, 62, 67, 69, 71, 77, 79, 83, 91, 93, 94, 103, 105, 107, 115, 119, 127, 129, 131, 133, 139, 141, 151, 155, 158, 161, 163, 167, 177, 179, 186, 189, 191, 199, 201, 203, 209, 211, 213, 217, 223
Offset: 1

Views

Author

Keywords

Comments

Bateman et al. (1981) proved that the asymptotic density of this sequence is 1/2. - Amiram Eldar, Jan 16 2020

References

  • Richard G. Guy, Unsolved Problems in Number Theory, 3rd ed., Springer, 2004, chapter 2, p. 76.
  • József Sándor, Dragoslav S. Mitrinovic, Borislav Crstici, Handbook of Number Theory I, Springer Science & Business Media, 2005, chapter III, section 51, page 119.

Crossrefs

Programs

  • Magma
    [k:k in [1..230]| DivisorSigma(1,k) mod (DivisorSigma(0,k))^2 eq 0]; // Marius A. Burtea, Jan 16 2020
  • Maple
    with(numtheory): t := [ ]: f := [ ]: for n from 1 to 500 do if sigma(n) mod sigma[ 0 ](n)^2 = 0 then t := [ op(t), n ] else f := [ op(f), n ]; fi; od: t;
  • Mathematica
    Select[Range[1, 250], Mod[DivisorSigma[1, #], DivisorSigma[0, #]^2] == 0 &] (* G. C. Greubel, Dec 06 2017 *)
  • PARI
    isok(n) = sigma(n) % numdiv(n)^2 == 0; \\ Michel Marcus, Dec 07 2017
    

Formula

{n: A035116(n) | A000203(n)}. - R. J. Mathar, Jan 29 2019

A110601 a(n) = phi(n)*tau(n)^2, where phi is Euler's totient function and tau(n) is the number of divisors of n.

Original entry on oeis.org

1, 4, 8, 18, 16, 32, 24, 64, 54, 64, 40, 144, 48, 96, 128, 200, 64, 216, 72, 288, 192, 160, 88, 512, 180, 192, 288, 432, 112, 512, 120, 576, 320, 256, 384, 972, 144, 288, 384, 1024, 160, 768, 168, 720, 864, 352, 184, 1600, 378, 720, 512, 864, 208, 1152, 640
Offset: 1

Views

Author

Emeric Deutsch, Jul 29 2005

Keywords

Examples

			a(4)=18 because phi(4)=2 and tau(4)=3.
		

Crossrefs

Programs

  • Magma
    [EulerPhi(n)*NumberOfDivisors(n)^2: n in [1..60]]; // Vincenzo Librandi, Jun 21 2017
  • Maple
    with(numtheory): a:=n->phi(n)*tau(n)^2: seq(a(n),n=1..70);
  • Mathematica
    Table[EulerPhi[n]DivisorSigma[0,n]^2,{n,60}] (* Harvey P. Dale, Nov 29 2011 *)
  • PARI
    a(n) = eulerphi(n)*numdiv(n)^2; \\ Michel Marcus, Jun 21 2017
    

Formula

a(n) = A000010(n) * A035116(n) = A062355(n) * A000005(n). - R. J. Mathar, Jul 26 2022
Multiplicative with a(p^e) = (e+1)^2*(p-1)*p^(e-1). - Amiram Eldar, Dec 29 2022

A162664 a(n) = sigma(n) + tau(n)^2.

Original entry on oeis.org

2, 7, 8, 16, 10, 28, 12, 31, 22, 34, 16, 64, 18, 40, 40, 56, 22, 75, 24, 78, 48, 52, 28, 124, 40, 58, 56, 92, 34, 136, 36, 99, 64, 70, 64, 172, 42, 76, 72, 154, 46, 160, 48, 120, 114, 88, 52, 224, 66, 129, 88, 134, 58, 184, 88, 184, 96, 106, 64, 312, 66, 112, 140, 176, 100
Offset: 1

Views

Author

Keywords

Comments

Row 2 of A162663.

Crossrefs

Programs

  • Mathematica
    Table[DivisorSigma[1, n] + DivisorSigma[0, n]^2, {n, 65}] (* Robert A. Russell, Apr 28 2018 *)
  • PARI
    a(n) = sigma(n) + numdiv(n)^2; \\ Michel Marcus, Apr 28 2018

A272209 Number of partitions of the number of divisors of n.

Original entry on oeis.org

1, 2, 2, 3, 2, 5, 2, 5, 3, 5, 2, 11, 2, 5, 5, 7, 2, 11, 2, 11, 5, 5, 2, 22, 3, 5, 5, 11, 2, 22, 2, 11, 5, 5, 5, 30, 2, 5, 5, 22, 2, 22, 2, 11, 11, 5, 2, 42, 3, 11, 5, 11, 2, 22, 5, 22, 5, 5, 2, 77, 2, 5, 11, 15, 5, 22, 2, 11, 5, 22, 2, 77, 2, 5, 11, 11, 5, 22, 2, 42, 7, 5, 2, 77
Offset: 1

Views

Author

Omar E. Pol, Apr 25 2016

Keywords

Examples

			For n = 12 the divisors of 12 are 1, 2, 3, 4, 6, 12. There are 6 divisors of 12 and the number of partitions of 6 is A000041(6) = 11, so a(12) = 11.
		

Crossrefs

Programs

  • Mathematica
    Table[PartitionsP@ DivisorSigma[0, n], {n, 120}] (* Michael De Vlieger, Apr 25 2016 *)
  • PARI
    a(n) = numbpart(numdiv(n)); \\ Michel Marcus, Apr 26 2016

Formula

a(n) = p(d(n)) = A000041(A000005(n)).

A301746 Expansion of Product_{k>=1} (1 + x^k)^(sigma_0(k)^2).

Original entry on oeis.org

1, 1, 4, 8, 19, 35, 82, 142, 291, 524, 989, 1724, 3174, 5393, 9517, 16064, 27464, 45481, 76357, 124402, 204497, 329559, 532316, 846564, 1349481, 2120814, 3335819, 5191522, 8070062, 12434176, 19136484, 29215324, 44531151, 67431985, 101882975, 153055897
Offset: 0

Views

Author

Vaclav Kotesovec, Mar 26 2018

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 50; CoefficientList[Series[Product[(1+x^k)^(DivisorSigma[0, k]^2), {k, 1, nmax}], {x, 0, nmax}], x]
    nmax = 50; s = 1 + x; Do[s *= Sum[Binomial[DivisorSigma[0, k]^2, j]*x^(j*k), {j, 0, nmax/k}]; s = Expand[s]; s = Take[s, Min[nmax + 1, Exponent[s, x] + 1, Length[s]]]; , {k, 2, nmax}]; CoefficientList[s, x] (* Vaclav Kotesovec, Aug 29 2018 *)

Formula

Conjecture: log(a(n)) ~ sqrt(n) * log(n)^(3/2) / (2*sqrt(6)). - Vaclav Kotesovec, Aug 29 2018

A301747 Expansion of Product_{k>=1} (1/(1 - x^k))^(sigma_0(k)^2).

Original entry on oeis.org

1, 1, 5, 9, 28, 48, 130, 226, 532, 941, 2021, 3545, 7210, 12509, 24209, 41715, 77742, 132404, 239655, 403731, 712426, 1188079, 2052070, 3386854, 5745200, 9388740, 15672560, 25376167, 41765597, 67021171, 108932532, 173327693, 278533669, 439653317, 699265665
Offset: 0

Views

Author

Vaclav Kotesovec, Mar 26 2018

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 50; CoefficientList[Series[Product[1/(1-x^k)^(DivisorSigma[0, k]^2), {k, 1, nmax}], {x, 0, nmax}], x]
    nmax = 50; s = 1 - x; Do[s *= Sum[Binomial[DivisorSigma[0, k]^2, j]*(-1)^j*x^(j*k), {j, 0, nmax/k}]; s = Expand[s]; s = Take[s, Min[nmax + 1, Exponent[s, x] + 1, Length[s]]]; , {k, 2, nmax}]; CoefficientList[Series[1/s, {x, 0, nmax}], x] (* Vaclav Kotesovec, Aug 29 2018 *)

Formula

log(a(n)) ~ sqrt(n) * log(n)^(3/2) / (2*sqrt(3)). - Vaclav Kotesovec, Aug 28 2018

A319089 a(n) = tau(n)^3, where tau is A000005.

Original entry on oeis.org

1, 8, 8, 27, 8, 64, 8, 64, 27, 64, 8, 216, 8, 64, 64, 125, 8, 216, 8, 216, 64, 64, 8, 512, 27, 64, 64, 216, 8, 512, 8, 216, 64, 64, 64, 729, 8, 64, 64, 512, 8, 512, 8, 216, 216, 64, 8, 1000, 27, 216, 64, 216, 8, 512, 64, 512, 64, 64, 8, 1728, 8, 64, 216, 343
Offset: 1

Views

Author

Vaclav Kotesovec, Sep 10 2018

Keywords

Crossrefs

Cf. A000005, A006218, A035116, A061502, A318755 (partial sums).

Programs

  • Maple
    with(numtheory): seq(tau(n)^3, n=1..100); # Ridouane Oudra, Mar 07 2023
  • Mathematica
    DivisorSigma[0, Range[100]]^3
  • PARI
    a(n) = numdiv(n)^3; \\ Altug Alkan, Sep 10 2018
    
  • PARI
    for(n=1, 100, print1(direuler(p=2, n, (1 + 4*X + X^2)/(1 - X)^4)[n], ", ")) \\ Vaclav Kotesovec, Mar 09 2023

Formula

Multiplicative with a(p^e) = (e+1)^3. - Amiram Eldar, Dec 31 2022
a(n) = Sum_{d1|n} Sum_{d2|n} tau(d1*d2). - Ridouane Oudra, Mar 07 2023
From Vaclav Kotesovec, Mar 09 2023: (Start)
Dirichlet g.f.: Product_{p prime} p^(2*s) * (1 + 4*p^s + p^(2*s)) / (p^s - 1)^4.
Dirichlet g.f.: zeta(s)^8 * Product_{p prime} (1 - 9/p^(2*s) + 16/p^(3*s) - 9/p^(4*s) + 1/p^(6*s)), (with a product that converges for s=1). (End)

A351521 Dirichlet g.f.: Product_{p prime} (1 + 4*p^(-s)).

Original entry on oeis.org

1, 4, 4, 0, 4, 16, 4, 0, 0, 16, 4, 0, 4, 16, 16, 0, 4, 0, 4, 0, 16, 16, 4, 0, 0, 16, 0, 0, 4, 64, 4, 0, 16, 16, 16, 0, 4, 16, 16, 0, 4, 64, 4, 0, 0, 16, 4, 0, 0, 0, 16, 0, 4, 0, 16, 0, 16, 16, 4, 0, 4, 16, 0, 0, 16, 64, 4, 0, 16, 64, 4, 0, 4, 16, 0, 0, 16, 64
Offset: 1

Views

Author

Vaclav Kotesovec, Feb 17 2022

Keywords

Crossrefs

Programs

  • Mathematica
    Table[MoebiusMu[n]^2 * 4^PrimeNu[n], {n, 1, 100}]
  • PARI
    for(n=1, 100, print1(direuler(p=2, n, (1 + 4*X))[n], ", "))

Formula

Dirichlet g.f.: zeta(s)^4 * Product_{prime p} (1 + (4 - 15*p^s + 20*p^(2*s) - 10*p^(3*s))/p^(5*s)).
a(n) = A008966(n) * A035116(n). - Enrique Pérez Herrero, Oct 27 2022
Multiplicative with a(p) = 4, and a(p^e) = 0 for e >= 2. - Amiram Eldar, Dec 25 2022

A361147 a(n) = sigma(n)^3.

Original entry on oeis.org

1, 27, 64, 343, 216, 1728, 512, 3375, 2197, 5832, 1728, 21952, 2744, 13824, 13824, 29791, 5832, 59319, 8000, 74088, 32768, 46656, 13824, 216000, 29791, 74088, 64000, 175616, 27000, 373248, 32768, 250047, 110592, 157464, 110592, 753571, 54872, 216000, 175616
Offset: 1

Views

Author

Vaclav Kotesovec, Mar 02 2023

Keywords

Crossrefs

Programs

  • Mathematica
    Table[DivisorSigma[1, n]^3, {n, 1, 50}]
  • PARI
    a(n) = sigma(n)^3;
    
  • PARI
    for(n=1, 100, print1(direuler(p=2, n, (1 + p*X*(2 + 2*p + p^2*X)) / ((1-X)*(1-p*X)*(1-p^2*X)*(1-p^3*X)))[n], ", "))

Formula

Multiplicative with a(p^e) = ((p^(e+1)-1)/(p-1))^3.
Dirichlet g.f.: zeta(s) * zeta(s-1) * zeta(s-2) * zeta(s-3) * Product_{primes p} (1 + 1/p^(2*s-3) + 2/p^(s-1) + 2/p^(s-2)).
Sum_{k=1..n} a(k) ~ c * Pi^6 * zeta(3) * n^4 / 2160, where c = Product_{primes p} (1 + 2/p^2 + 2/p^3 + 1/p^5) = 2.83598357433419286770442457158038489640898183...
a(n) = A000578(A000203(n)).

A065814 a(n) = tau(n)^2 - tau(n^2), where tau(n) = A000005(n).

Original entry on oeis.org

0, 1, 1, 4, 1, 7, 1, 9, 4, 7, 1, 21, 1, 7, 7, 16, 1, 21, 1, 21, 7, 7, 1, 43, 4, 7, 9, 21, 1, 37, 1, 25, 7, 7, 7, 56, 1, 7, 7, 43, 1, 37, 1, 21, 21, 7, 1, 73, 4, 21, 7, 21, 1, 43, 7, 43, 7, 7, 1, 99, 1, 7, 21, 36, 7, 37, 1, 21, 7, 37, 1, 109, 1, 7, 21, 21, 7, 37, 1, 73, 16, 7, 1, 99, 7, 7, 7, 43
Offset: 1

Views

Author

Labos Elemer, Nov 22 2001

Keywords

Comments

If n = p^c = power of a prime, then a(n) = (c+1)^2 - (2c+1) = c^2. If n is squarefree with k prime factors then a(n) = 4^k - 3^k, so A065814(A002110(n)) = 4^n - 3^n = A005061(n). Terms depend on prime signature only.
If n is a prime (A000040), then a(n) = 1. If n is a semiprime (A001358), then a(n) = 4 + 3*ceiling(sqrt(n)) - 3*floor(sqrt(n)). If n is a triprime (A014612), then a(n) = 9 * floor(1/omega(n)) + 21 * (1 - (omega(n) mod 2)) + 37 * floor(omega(n)/3), n > 1. - Wesley Ivan Hurt, May 24 2013

Crossrefs

Programs

  • Mathematica
    a[n_] := DivisorSigma[0, n]^2 - DivisorSigma[0, n^2]; Array[a, 100] (* Amiram Eldar, Apr 25 2024 *)
  • PARI
    a(n) = { numdiv(n)^2 - numdiv(n^2) } \\ Harry J. Smith, Oct 31 2009

Formula

a(n) = A000005(n)^2 - A000005(n^2).
G.f.: Sum_{n>=1} A000005(n^2)*x^(2*n)/(1-x^n). - Mircea Merca, Feb 26 2014
a(n) = A035116(n) - A048691(n). - Amiram Eldar, Apr 25 2024
Previous Showing 21-30 of 32 results. Next