A132056 Triangle read by rows, the Bell transform of Product_{k=0..n} 7*k+1 without column 0.
1, 8, 1, 120, 24, 1, 2640, 672, 48, 1, 76560, 22800, 2160, 80, 1, 2756160, 920160, 104880, 5280, 120, 1, 118514880, 43243200, 5639760, 347760, 10920, 168, 1, 5925744000, 2323918080, 336510720, 24071040, 937440, 20160, 224, 1
Offset: 1
Examples
{1}; {8,1}; {120,24,1}; {2640,672,48,1}; ...
Links
- F. Bergeron, Ph. Flajolet and B. Salvy, Varieties of Increasing Trees, Lecture Notes in Computer Science vol. 581, ed. J.-C. Raoult, Springer 1992, pp. 24-48.
- P. Blasiak, K. A. Penson and A. I. Solomon, The general boson normal ordering problem, Phys. Lett. A 309 (2003) 198-205.
- P. Blasiak, K. A. Penson and A. I. Solomon, The general boson normal ordering problem, arXiv:quant-ph/0402027, 2004.
- W. Lang, On generalizations of Stirling number triangles, J. Integer Seqs., Vol. 3 (2000), #00.2.4.
- M. Janjic, Some classes of numbers and derivatives, JIS 12 (2009) 09.8.3
- W. Lang, First 10 rows.
Programs
-
Maple
# The function BellMatrix is defined in A264428. # Adds (1,0,0,0, ..) as column 0. BellMatrix(n -> mul(7*k+1, k=0..n), 8); # Peter Luschny, Jan 27 2016
-
Mathematica
a[n_, m_] := a[n, m] = ((m*a[n-1, m-1]*(m-1)! + (m+7*n-7)*a[n-1, m]*m!)*n!)/(n*m!*(n-1)!); a[n_, m_] /; n < m = 0; a[_, 0] = 0; a[1, 1] = 1; Flatten[Table[a[n, m], {n, 1, 8}, {m, 1, n}]][[1 ;; 36]] (* Jean-François Alcover, Jun 17 2011 *) rows = 8; a[n_, m_] := BellY[n, m, Table[Product[7k+1, {k, 0, j}], {j, 0, rows}]]; Table[a[n, m], {n, 1, rows}, {m, 1, n}] // Flatten (* Jean-François Alcover, Jun 22 2018 *)
Formula
a(n, m) = n!*A132057(n, m)/(m!*7^(n-m)); a(n+1, m) = (7*n+m)*a(n, m)+ a(n, m-1), n >= m >= 1; a(n, m) := 0, n
E.g.f. of m-th column: ((-1+(1-7*x)^(-1/7))^m)/m!.
Extensions
New name from Peter Luschny, Jan 27 2016
A223532 Triangle S(n,k) by rows: coefficients of 6^(n/2)*(x^(5/6)*d/dx)^n when n=0,2,4,6,...
1, 1, 6, 7, 84, 36, 91, 1638, 1404, 216, 1729, 41496, 53352, 16416, 1296, 43225, 1296750, 2223000, 1026000, 162000, 7776, 1339975, 48239100, 103369500, 63612000, 15066000, 1446336, 46656, 49579075, 2082321150, 5354540100, 4118877000, 1300698000, 187300512
Offset: 1
Examples
Triangle begins: 1; 1, 6; 7, 84, 36; 91, 1638, 1404, 216; 1729, 41496, 53352, 16416, 1296; 43225, 1296750, 2223000, 1026000, 162000, 7776; 1339975, 48239100, 103369500, 63612000, 15066000, 1446336, 46656; 49579075, 2082321150, 5354540100, 4118877000, 1300698000, 187300512, 12083904, 279936;
Links
- U. N. Katugampola, Mellin Transforms of Generalized Fractional Integrals and Derivatives, Appl. Math. Comput. 257(2015) 566-580.
- U. N. Katugampola, Existence and Uniqueness results for a class of Generalized Fractional Differential Equations, arXiv preprint arXiv:1411.5229, 2014
Crossrefs
Programs
-
Maple
a[0]:= f(x): for i from 1 to 20 do a[i] := simplify(6^((i+1)mod 2)*x^((4((i+1)mod 2)+1)/6)*(diff(a[i-1],x$1 ))); end do: for j from 1 to 10 do b[j]:=a[2j]; end do;
A223511 Triangle T(n,k) represents the coefficients of (x^9*d/dx)^n, where n=1,2,3,...;generalization of Stirling numbers of second kind A008277, Lah-numbers A008297.
1, 9, 1, 153, 27, 1, 3825, 855, 54, 1, 126225, 32895, 2745, 90, 1, 5175225, 1507815, 150930, 6705, 135, 1, 253586025, 80565975, 9205245, 499590, 13860, 189, 1, 14454403425, 4926412575, 623675430, 39180645, 1345050, 25578, 252, 1
Offset: 1
Comments
Also the Bell transform of A045755(n+1). For the definition of the Bell transform see A264428. - Peter Luschny, Jan 29 2016
Examples
1; 9,1; 153,27,1; 3825,855,54,1; 126225,32895,2745,90,1; 5175225,1507815,150930,6705,135,1; 253586025,80565975,9205245,499590,13860,189,1; 14454403425,4926412575,623675430,39180645,1345050,25578,252,1;
Crossrefs
Programs
-
Maple
b[0]:=g(x): for j from 1 to 10 do b[j]:=simplify(x^9*diff(b[j-1],x$1); end do; # The function BellMatrix is defined in A264428. # Adds (1,0,0,0, ..) as column 0. BellMatrix(n -> mul(8*k+1, k=0..n), 10); # Peter Luschny, Jan 29 2016
-
Mathematica
rows = 8; t = Table[Product[8k+1, {k, 0, n}], {n, 0, rows}]; T[n_, k_] := BellY[n, k, t]; Table[T[n, k], {n, 1, rows}, {k, 1, n}] // Flatten (* Jean-François Alcover, Jun 22 2018, after Peter Luschny *)
A223522 Triangle T(n,k) represents the coefficients of (x^20*d/dx)^n, where n=1,2,3,...; generalization of Stirling numbers of second kind A008277, Lah-numbers A008297.
1, 20, 1, 780, 60, 1, 45240, 4320, 120, 1, 3483480, 382200, 13800, 200, 1, 334414080, 40556880, 1734600, 33600, 300, 1, 38457619200, 5039012160, 243505080, 5699400, 69300, 420, 1
Offset: 1
Examples
1; 20,1; 780,60,1; 45240,4320,120,1; 3483480,382200,13800,200,1; 334414080,40556880,1734600,33600,300,1; 38457619200,5039012160,243505080,5699400,69300,420,1; 5153320972800,718724260800,38155703040,1024322880,15262800,127680,560,1;
Crossrefs
Programs
-
Maple
b[0]:=f(x): for j from 1 to 10 do b[j]:=simplify(x^20*diff(b[j-1],x$1); end do;
A122848 Exponential Riordan array (1, x(1+x/2)).
1, 0, 1, 0, 1, 1, 0, 0, 3, 1, 0, 0, 3, 6, 1, 0, 0, 0, 15, 10, 1, 0, 0, 0, 15, 45, 15, 1, 0, 0, 0, 0, 105, 105, 21, 1, 0, 0, 0, 0, 105, 420, 210, 28, 1, 0, 0, 0, 0, 0, 945, 1260, 378, 36, 1, 0, 0, 0, 0, 0, 945, 4725, 3150, 630, 45, 1, 0, 0, 0, 0, 0, 0, 10395, 17325, 6930, 990, 55, 1, 0, 0
Offset: 0
Comments
Entries are Bessel polynomial coefficients. Row sums are A000085. Diagonal sums are A122849. Inverse is A122850. Product of A007318 and A122848 gives A100862.
T(n,k) is the number of self-inverse permutations of {1,2,...,n} having exactly k cycles. - Geoffrey Critzer, May 08 2012
Bessel numbers of the second kind. For relations to the Hermite polynomials and the Catalan (A033184 and A009766) and Fibonacci (A011973, A098925, and A092865) matrices, see Yang and Qiao. - Tom Copeland, Dec 18 2013.
Also the inverse Bell transform of the double factorial of odd numbers Product_{k= 0..n-1} (2*k+1) (A001147). For the definition of the Bell transform see A264428 and for cross-references A265604. - Peter Luschny, Dec 31 2015
Examples
Triangle begins: 1 0 1 0 1 1 0 0 3 1 0 0 3 6 1 0 0 0 15 10 1 0 0 0 15 45 15 1 0 0 0 0 105 105 21 1 0 0 0 0 105 420 210 28 1 0 0 0 0 0 945 1260 378 36 1 From _Gus Wiseman_, Jan 12 2021: (Start) As noted above, a(n) is the number of set partitions of {1..n} into k singletons or pairs. This is also the number of set partitions of subsets of {1..n} into n - k pairs. In the first case, row n = 5 counts the following set partitions: {{1},{2,3},{4,5}} {{1},{2},{3},{4,5}} {{1},{2},{3},{4},{5}} {{1,2},{3},{4,5}} {{1},{2},{3,4},{5}} {{1,2},{3,4},{5}} {{1},{2,3},{4},{5}} {{1,2},{3,5},{4}} {{1,2},{3},{4},{5}} {{1},{2,4},{3,5}} {{1},{2},{3,5},{4}} {{1},{2,5},{3,4}} {{1},{2,4},{3},{5}} {{1,3},{2},{4,5}} {{1},{2,5},{3},{4}} {{1,3},{2,4},{5}} {{1,3},{2},{4},{5}} {{1,3},{2,5},{4}} {{1,4},{2},{3},{5}} {{1,4},{2},{3,5}} {{1,5},{2},{3},{4}} {{1,4},{2,3},{5}} {{1,4},{2,5},{3}} {{1,5},{2},{3,4}} {{1,5},{2,3},{4}} {{1,5},{2,4},{3}} In the second case, we have: {{1,2},{3,4}} {{1,2}} {} {{1,2},{3,5}} {{1,3}} {{1,2},{4,5}} {{1,4}} {{1,3},{2,4}} {{1,5}} {{1,3},{2,5}} {{2,3}} {{1,3},{4,5}} {{2,4}} {{1,4},{2,3}} {{2,5}} {{1,4},{2,5}} {{3,4}} {{1,4},{3,5}} {{3,5}} {{1,5},{2,3}} {{4,5}} {{1,5},{2,4}} {{1,5},{3,4}} {{2,3},{4,5}} {{2,4},{3,5}} {{2,5},{3,4}} (End)
Links
- G. C. Greubel, Table of n, a(n) for the first 50 rows, flattened
- Peter Bala, Generalized Dobinski formulas
- Richell O. Celeste, Roberto B. Corcino, and Ken Joffaniel M. Gonzales, Two Approaches to Normal Order Coefficients, Journal of Integer Sequences, Vol. 20 (2017), Article 17.3.5.
- Tom Copeland, Infinitesimal Generators, the Pascal Pyramid, and the Witt and Virasoro Algebras
- H. Han and S. Seo, Combinatorial proofs of inverse relations and log-concavity for Bessel numbers, Eur. J. Combinat. 29 (7) (2008) 1544-1554. [From _R. J. Mathar_, Mar 20 2009]
- Robert S. Maier, Boson Operator Ordering Identities from Generalized Stirling and Eulerian Numbers, arXiv:2308.10332 [math.CO], 2023. See p. 18.
- S. Yang and Z. Qiao, The Bessel Numbers and Bessel Matrices, Journal of Mathematical Research & Exposition, July, 2011, Vol. 31, No. 4, pp. 627-636. [From _Tom Copeland_, Dec 18 2013]
Crossrefs
Row sums are A000085.
Column sums are A001515.
Same as A049403 but with a first column k = 0.
The same set partitions counted by number of pairs are A100861.
Reversing rows gives A111924 (without column k = 0).
A047884 counts standard Young tableaux by size and greatest row length.
A238123 counts standard Young tableaux by size and least row length.
A322661 counts labeled covering half-loop-graphs.
A339742 counts factorizations into distinct primes or squarefree semiprimes.
Programs
-
Maple
# The function BellMatrix is defined in A264428. BellMatrix(n -> `if`(n<2,1,0), 9); # Peter Luschny, Jan 27 2016
-
Mathematica
t[n_, k_] := k!*Binomial[n, k]/((2 k - n)!*2^(n - k)); Table[ t[n, k], {n, 0, 11}, {k, 0, n}] // Flatten (* Second program: *) rows = 12; t = Join[{1, 1}, Table[0, rows]]; T[n_, k_] := BellY[n, k, t]; Table[T[n, k], {n, 0, rows}, {k, 0, n}] // Flatten (* Jean-François Alcover, Jun 23 2018,after Peter Luschny *) sbs[{}]:={{}};sbs[set:{i_,_}]:=Join@@Function[s,(Prepend[#1,s]&)/@sbs[Complement[set,s]]]/@Cases[Subsets[set],{i}|{i,_}]; Table[Length[Select[sbs[Range[n]],Length[#]==k&]],{n,0,6},{k,0,n}] (* Gus Wiseman, Jan 12 2021 *)
-
PARI
{T(n,k)=if(2*k
n, 0, n!/(2*k-n)!/(n-k)!*2^(k-n))} /* Michael Somos, Oct 03 2006 */ -
Sage
# uses[inverse_bell_transform from A265605] multifact_2_1 = lambda n: prod(2*k + 1 for k in (0..n-1)) inverse_bell_matrix(multifact_2_1, 9) # Peter Luschny, Dec 31 2015
Formula
Number triangle T(n,k) = k!*C(n,k)/((2k-n)!*2^(n-k)).
T(n,k) = A001498(k,n-k). - Michael Somos, Oct 03 2006
E.g.f.: exp(y(x+x^2/2)). - Geoffrey Critzer, May 08 2012
Triangle equals the matrix product A008275*A039755. Equivalently, the n-th row polynomial R(n,x) is given by the Type B Dobinski formula R(n,x) = exp(-x/2)*Sum_{k>=0} P(n,2*k+1)*(x/2)^k/k!, where P(n,x) = x*(x-1)*...*(x-n+1) denotes the falling factorial polynomial. Cf. A113278. - Peter Bala, Jun 23 2014
From Daniel Checa, Aug 28 2022: (Start)
E.g.f. for the m-th column: (x^2/2+x)^m/m!.
T(n,k) = T(n-1,k-1) + (n-1)*T(n-2,k-1) for n>1 and k=1..n, T(0,0) = 1. (End)
A078739 Triangle of generalized Stirling numbers S_{2,2}(n,k) read by rows (n>=1, 2<=k<=2n).
1, 2, 4, 1, 4, 32, 38, 12, 1, 8, 208, 652, 576, 188, 24, 1, 16, 1280, 9080, 16944, 12052, 3840, 580, 40, 1, 32, 7744, 116656, 412800, 540080, 322848, 98292, 16000, 1390, 60, 1, 64, 46592, 1446368, 9196992, 20447056, 20453376, 10564304, 3047520, 511392, 50400
Offset: 1
Comments
A generalization of the Stirling2 numbers S_{1,1} from A008277.
The g.f. for column k=2*K is (x^K)*pe(K,x)*d(k,x) and for k=2*K+1 it is (x^K)*po(K,x)*2*(K+1)*K*d(k,x), K>= 1, with d(k,x) := 1/product(1-p*(p-1)*x,p=2..k) and the row polynomials pe(n,x) := sum(A089275(n,m)*x^m,m=0..n-1) and po(n,x) := sum(A089276(n,m)*x^m,m=0..n-1). - Wolfdieter Lang, Nov 07 2003
The formula for the k-th column sequence is given in A089511.
Codara et al., show that T(n,k) gives the number of k-colorings of the graph nK_2 (the disjoint union of n copies of the complete graph K_2). An example is given below. - Peter Bala, Aug 15 2013
Examples
From _Peter Bala_, Aug 15 2013: (Start) The table begins n\k | 2 3 4 5 6 7 8 = = = = = = = = = = = = = = = = = = 1 | 1 2 | 2 4 1 3 | 4 32 38 12 1 4 | 8 208 652 576 188 24 1 ... Graph coloring interpretation of T(2,3) = 4: The graph 2K_2 is 2 copies of K_2, the complete graph on 2 vertices: o---o o---o a b c d The four 3-colorings of 2K_2 are ac|b|d, ad|b|c, bc|a|d and bd|a|c. (End)
Links
- P. Blasiak, K. A. Penson and A. I. Solomon, The Boson Normal Ordering Problem and Generalized Bell Numbers, arXiv:quant-ph/0212072, 2002.
- P. Blasiak, K. A. Penson and A. I. Solomon, The general boson normal ordering problem, arXiv:quant-ph/0402027, 2004.
- P. Blasiak, K. A. Penson and A. I. Solomon, The general boson normal ordering problem, Phys. Lett. A 309 (2003) 198-205.
- Steve Butler, Fan Chung, Jay Cummings, R. L. Graham, Juggling card sequences, arXiv:1504.01426 [math.CO], 2015.
- Leonard Carlitz, On Arrays of Numbers, Am. J. Math., 54,4 (1932) 739-752. [Eqs. (3) and (4) with lambda = 0, mu = 2, a_{n,k-1} = a(n, k).- _Wolfdieter Lang_, Jan 30 2020 ]
- P. Codara, O. M. D’Antona, P. Hell, A simple combinatorial interpretation of certain generalized Bell and Stirling numbers arXiv:1308.1700v1 [cs.DM]
- A. Dzhumadildaev and D. Yeliussizov, Path decompositions of digraphs and their applications to Weyl algebra, arXiv preprint arXiv:1408.6764v1, 2014. [Version 1 contained many references to the OEIS, which were removed in Version 2. - _N. J. A. Sloane_, Mar 28 2015]
- Askar Dzhumadil'daev and Damir Yeliussizov, Walks, partitions, and normal ordering, Electronic Journal of Combinatorics, 22(4) (2015), #P4.10.
- S.-M. Ma, T. Mansour, M. Schork. Normal ordering problem and the extensions of the Stirling grammar, arXiv preprint arXiv:1308.0169 [math.CO], 2013.
- Toufik Mansour, Matthias Schork and Mark Shattuck, The Generalized Stirling and Bell Numbers Revisited, Journal of Integer Sequences, Vol. 15 (2012), #12.8.3.
Crossrefs
Row sums give A020556. Triangle S_{1, 1} = A008277, S_{2, 1} = A008297 (ignoring signs), S_{3, 1} = A035342, S_{3, 2} = A078740, S_{3, 3} = A078741. A090214 (S_{4,4}).
The column sequences are A000079(n-1)(powers of 2), 4*A016129(n-2), A089271, 12*A089272, A089273, etc.
Main diagonal is A217900.
Cf. A071951 (Legendre-Stirling triangle).
Programs
-
Maple
# Note that the function implements the full triangle because it can be # much better reused and referenced in this form. A078739 := proc(n,k) local r; add((-1)^(n-r)*binomial(n,r)*combinat[stirling2](n+r,k),r=0..n) end: # Displays the truncated triangle from the definition: seq(print(seq(A078739(n,k),k=2..2*n)),n=1..6); # Peter Luschny, Mar 25 2011
-
Mathematica
t[n_, k_] := Sum[(-1)^(n-r)*Binomial[n, r]*StirlingS2[n+r, k], {r, 0, n}]; Table[t[n, k], {n, 1, 7}, {k, 2, 2*n}] // Flatten (* Jean-François Alcover, Apr 11 2013, after Peter Luschny *)
Formula
a(n, k) = sum(binomial(k-2+p, p)*A008279(2, p)*a(n-1, k-2+p), p=0..2) if 2 <= k <= 2*n for n>=1, a(1, 2)=1; else 0. Here A008279(2, p) gives the third row (k=2) of the augmented falling factorial triangle: [1, 2, 2] for p=0, 1, 2. From eq.(21) with r=2 of the Blasiak et al. paper.
a(n, k) = (((-1)^k)/k!)*sum(((-1)^p)*binomial(k, p)*A008279(p, 2)^n, p=2..k) for 2 <= k <= 2*n, n>=1. From eq.(19) with r=2 of the Blasiak et al. paper.
a(n, k) = sum(A071951(n, j)*A089503(j, 2*j-k+1), j=ceiling(k/2)..min(n, k-1)), 1<=n, 2<=k<=2n; relation to Legendre-Stirling triangle. Wolfdieter Lang, Dec 01 2003
a(n, k) = A122193(n,k)*2^n/k! - Peter Luschny, Mar 25 2011
E^n = sum_{k=2}^(2n) a(n,k)*x^k*D^k where D is the operator d/dx, and E the operator x^2d^2/dx^2.
The row polynomials R(n,x) are given by the Dobinski-type formula R(n,x) = exp(-x)*sum {k = 0..inf} (k*(k-1))^n*x^k/k!. - Peter Bala, Aug 15 2013
Extensions
More terms from Wolfdieter Lang, Nov 07 2003
A193685 5-Stirling numbers of the second kind.
1, 5, 1, 25, 11, 1, 125, 91, 18, 1, 625, 671, 217, 26, 1, 3125, 4651, 2190, 425, 35, 1, 15625, 31031, 19981, 5590, 740, 45, 1, 78125, 201811, 170898, 64701, 12250, 1190, 56, 1, 390625, 1288991, 1398097, 688506, 174951, 24150, 1806, 68, 1, 1953125, 8124571, 11075670, 6906145, 2263065, 416451, 44016, 2622, 81, 1, 9765625, 50700551, 85654261, 66324830, 27273730, 6427575, 900627, 75480, 3675, 95, 1
Offset: 0
Comments
This is the lower triangular Sheffer matrix (exp(5*x),exp(x)-1). For Sheffer matrices see the W. Lang link under A006232 with references, and the rules for the conversion to the umbral notation of S. Roman's book.
The general case is Sheffer (exp(r*x),exp(x)-1), r=0,1,..., corresponding to r-Stirling2 numbers with row and column offsets 0. See the Broder link for r-Stirling2 numbers with offset [r,r].
a(n,m), n >= m >= 0, gives the number of partitions of the set {1.2....,n+5} into m+5 nonempty distinct subsets such that 1,2,3,4 and 5 belong to distinct subsets.
a(n,m) appears in the following normal ordering of Bose operators a and a* satisfying the Lie algebra [a,a*]=1: (a*a)^n (a*)^5 = Sum_{m=0..n} a(n,m)*(a*)^(5+m)*a^m, n >= 0. See the Mikhailov papers, where a(n,m) = S(n+5,m+5,5).
With a->D=d/dx and a*->x we also have
(xD)^n x^5 = Sum_{m=0..n} a(n,m)*x^(5+m)*D^m, n >= 0.
Examples
n\m 0 1 2 3 4 5 ... 0 1 1 5 1 2 25 11 1 3 125 91 18 1 4 625 671 217 26 1 5 3125 4651 2190 425 35 1 ... 5-restricted S2: a(1,0)=5 from 1,6|2|3|4|5, 2,6|1|3|4|5, 3,6|1|2|4|5, 4,6|1|2|3|5 and 5,6|1|2|3|4. Recurrence: a(4,2) = (5+2)*a(3,2)+ a(3,1) = 7*18 + 91 = 217. Normal ordering (n=1): (xD)^1 x^5 = Sum_{m=0..1} a(1,m)*x^(5+m)*D^m = 5*x^5 + 1*x^6*D. a(2,1) = Sum_{j=0..1} S1(5,5-j)*S2(7-j,6) = 1*21 - 10*1 = 11.
Links
- Vincenzo Librandi, Rows n = 0..100, flattened
- Peter Bala, Generalized Dobinski formulas
- Andrei Z. Broder, The r-Stirling numbers, Discrete Math. 49, 241-259 (1984)
- A. Dzhumadildaev and D. Yeliussizov, Path decompositions of digraphs and their applications to Weyl algebra, arXiv preprint arXiv:1408.6764v1 [math.CO], 2014. [Version 1 contained many references to the OEIS, which were removed in Version 2. - _N. J. A. Sloane_, Mar 28 2015]
- Askar Dzhumadil’daev and Damir Yeliussizov, Walks, partitions, and normal ordering, Electronic Journal of Combinatorics, 22(4) (2015), #P4.10.
- V. V. Mikhailov, Ordering of some boson operator functions, J. Phys A: Math. Gen. 16 (1983) 3817-3827.
- V. V. Mikhailov, Normal ordering and generalised Stirling numbers, J. Phys A: Math. Gen. 18 (1985) 231-235.
Crossrefs
Programs
-
Mathematica
a[n_, m_] := Sum[ StirlingS1[5, 5-j]*StirlingS2[n+5-j, m+5], {j, 0, Min[5, n-m]}]; Flatten[ Table[ a[n, m], {n, 0, 10}, {m, 0, n}] ] (* Jean-François Alcover, Dec 02 2011, after Wolfdieter Lang *)
Formula
E.g.f. of row polynomials s(n,x):=Sum_{m=0..n} a(n,m)*x^m: exp(5*z + x(exp(z)-1)).
E.g.f. of column no. m (with leading zeros):
exp(5*x)*((exp(x)-1)^m)/m!, m >= 0 (Sheffer).
O.g.f. of column no. m (without leading zeros):
1/Product_{j=0..m} (1-(5+j)*x), m >= 0. (Compute the first derivative of the column e.g.f. and compare its Laplace transform with the partial fraction decomposition of the o.g.f. x^(m-1)/Product_{j=0..m} (1-(5+j)*x). This works for every r-restricted Stirling2 triangle.)
Recurrence: a(n,m) = (5+m)*a(n-1,m) + a(n-1,m-1), a(0,0)=1, a(n,m)=0 if n < m, a(n,-1)=0.
a(n,m) = Sum_{j=0..min(5,n-m)} S1(5,5-j)*S2(n+5-j,m+5), n >= m >= 0, with S1 and S2 the Stirling1 and Stirling2 numbers A008275 and A048993, respectively (see the Mikailov papers).
Dobinski-type formula for the row polynomials: R(n,x) = exp(-x)*Sum_{k>=0} k*(4+k)^(n-1)*x^(k-1)/k!. - Peter Bala, Jun 23 2014
A046089 Triangle read by rows, the Bell transform of (n+2)!/2 without column 0.
1, 3, 1, 12, 9, 1, 60, 75, 18, 1, 360, 660, 255, 30, 1, 2520, 6300, 3465, 645, 45, 1, 20160, 65520, 47880, 12495, 1365, 63, 1, 181440, 740880, 687960, 235305, 35700, 2562, 84, 1, 1814400, 9072000, 10372320, 4452840, 877905, 86940, 4410, 108, 1
Offset: 1
Comments
Previous name was: A triangle of numbers related to triangle A030523.
a(n,1)= A001710(n+1). a(n,m)=: S1p(3; n,m), a member of a sequence of lower triangular Jabotinsky matrices with nonnegative entries, including S1p(1; n,m)= A008275 (unsigned Stirling first kind), S1p(2; n,m)= A008297(n,m) (unsigned Lah numbers).
Signed lower triangular matrix (-1)^(n-m)*a(n,m) is inverse to matrix A035342(n,m) := S2(3; n,m). The monic row polynomials E(n,x) := sum(a(n,m)*x^m,m=1..n), E(0,x) := 1 are exponential convolution polynomials (see A039692 for the definition and a Knuth reference).
a(n,m) enumerates unordered increasing n-vertex m-forests composed of m unary trees (out-degree r from {0,1}) whose vertices of depth (distance from the root) j>=1 come in j+2 colors. The k roots (j=0) each come in one (or no) color. - Wolfdieter Lang, Oct 12 2007
a(4,2)=75=4*(3*4)+3*(3*3) from the two types of unordered 2-forests of unary increasing trees associated with the two m=2 parts partitions (1,3) and (2^2) of n=4. The first type has 4 increasing labelings, each coming in (1)*(1*3*4)=12 colored versions, e.g. ((1c1),(2c1,3c3,4c2)) with lcp for vertex label l and color p. Here the vertex labeled 3 has depth j=1, hence 3 colors, c1, c2 and c3, can be chosen and the vertex labeled 4 with j=2 can come in 4 colors, e.g. c1, c2, c3 and c4. Therefore there are 4*(1)*(1*3*4)=48 forests of this (1,3) type. Similarly the (2,2) type yields 3*((1*3)*(1*3))=27 such forests, e.g. ((1c1,3c2)(2c1,4c1)) or ((1c1,3c2)(2c1,4c2)), etc. - Wolfdieter Lang, Oct 12 2007
Also the Bell transform of A001710(n+2) (adding 1,0,0,.. as column 0). For the definition of the Bell transform see A264428. - Peter Luschny, Jan 19 2016
Examples
Triangle begins: [1], [3, 1], [12, 9, 1], [60, 75, 18, 1], [360, 660, 255, 30, 1], [2520, 6300, 3465, 645, 45, 1], ...
Links
- Wolfdieter Lang, On generalizations of Stirling number triangles, J. Integer Seqs., Vol. 3 (2000), #00.2.4.
- Wolfdieter Lang, First ten rows.
- E. Neuwirth, Recursively defined combinatorial Functions: Extending Galton's board, Discr. Maths. 239 (2001) 33-51.
- John Riordan, Letter, Apr 28 1976.
Programs
-
Mathematica
a[n_, m_] /; n >= m >= 1 := a[n, m] = (2m + n - 1)*a[n-1, m] + a[n-1, m-1]; a[n_, m_] /; n < m = 0; a[, 0] = 0; a[1, 1] = 1; Flatten[Table[a[n, m], {n, 1, 9}, {m, 1, n}]] (* _Jean-François Alcover, Jul 22 2011 *) a[n_, k_] := -(-1/2)^k*(n+1)!*HypergeometricPFQ[{1-k, n/2+1, (n+3)/2}, {3/2, 2}, 1]/(k-1)!; Table[a[n, k], {n, 1, 9}, {k, 1, n}] // Flatten (* Jean-François Alcover, Feb 28 2013, after Vladimir Kruchinin *) a[0] = 0; a[n_] := (n + 1)!/2; T[n_, k_] := T[n, k] = If[k == 0, If[n == 0, 1, a[0]^n], Sum[Binomial[n - 1, j - 1] a[j] T[n - j, k - 1], {j, 0, n - k + 1}]]; Table[T[n, k], {n, 1, 9}, {k, 1, n}] // Flatten (* Jean-François Alcover, Jan 19 2016, after Peter Luschny, updated Jan 01 2021 *) rows = 9; a[n_, m_] := BellY[n, m, Table[(k+2)!/2, {k, 0, rows}]]; Table[a[n, m], {n, 1, rows}, {m, 1, n}] // Flatten (* Jean-François Alcover, Jun 22 2018 *)
-
Maxima
a(n,k):=(n!*sum((-1)^(k-j)*binomial(k,j)*binomial(n+2*j-1,2*j-1),j,1,k))/(2^k*k!); /* Vladimir Kruchinin, Apr 01 2011 */
-
Sage
# uses[bell_matrix from A264428] # Adds a column 1,0,0,0, ... at the left side of the triangle. bell_matrix(lambda n: factorial(n+2)//2, 9) # Peter Luschny, Jan 19 2016
Formula
a(n, m) = n!*A030523(n, m)/(m!*2^(n-m)); a(n, m) = (2*m+n-1)*a(n-1, m) + a(n-1, m-1), n >= m >= 1; a(n, m)=0, n
a(n, m) = sum(|S1(n, j)|* A075497(j, m), j=m..n) (matrix product), with S1(n, j) := A008275(n, j) (signed Stirling1 triangle). Priv. comm. to Wolfdieter Lang by E. Neuwirth, Feb 15 2001; see also the 2001 Neuwirth reference.
a(n, k) = (n!*sum(j=1..k, (-1)^(k-j)*binomial(k,j)*binomial(n+2*j-1,2*j-1)))/(2^k*k!) - Vladimir Kruchinin, Apr 01 2011
Extensions
New name from Peter Luschny, Jan 19 2016
A157399 A partition product of Stirling_2 type [parameter k = -3] with biggest-part statistic (triangle read by rows).
1, 1, 3, 1, 9, 15, 1, 45, 60, 105, 1, 165, 600, 525, 945, 1, 855, 5250, 6300, 5670, 10395, 1, 3843, 39900, 91875, 79380, 72765, 135135, 1, 21819, 391440, 1164975, 1323000, 1164240, 1081080, 2027025, 1
Offset: 1
Comments
Links
- Peter Luschny, Counting with Partitions.
- Peter Luschny, Generalized Stirling_2 Triangles.
Crossrefs
Formula
T(n,0) = [n = 0] (Iverson notation) and for n > 0 and 1 <= m <= n
T(n,m) = Sum_{a} M(a)|f^a| where a = a_1,..,a_n such that
1*a_1+2*a_2+...+n*a_n = n and max{a_i} = m, M(a) = n!/(a_1!*..*a_n!),
f^a = (f_1/1!)^a_1*..*(f_n/n!)^a_n and f_n = product_{j=0..n-1}(-2*j - 1).
A090214 Generalized Stirling2 array S_{4,4}(n,k).
1, 24, 96, 72, 16, 1, 576, 13824, 50688, 59904, 30024, 7200, 856, 48, 1, 13824, 1714176, 21606912, 76317696, 110160576, 78451200, 30645504, 6976512, 953424, 78400, 3760, 96, 1, 331776, 207028224, 8190885888, 74684104704, 253100173824
Offset: 1
Comments
The row length sequence for this array is [1,5,9,13,17,...] = A016813(n-1), n >= 1.
The g.f. for the k-th column, (with leading zeros and k >= 4) is G(k,x) = x^ceiling(k/4)*P(k,x)/Product_{p = 4..k} (1 - fallfac(p,4)*x), with fallfac(n,m) := A008279(n,m) (falling factorials) and P(k,x) := Sum_{m = 0..kmax(k)} A090221(k,m)*x^m, k >= 4, with kmax(k) := A057353(k-4)= floor(3*(k-4)/4). For the recurrence of the G(k,x) see A090221.
Codara et al., show that T(n,k) gives the number of k-colorings of the graph nK_4 (the disjoint union of n copies of the complete graph K_4). - Peter Bala, Aug 15 2013
Examples
Table begins n\k| 4 5 6 7 8 9 10 11 12 = = = = = = = = = = = = = = = = = = = = = = = = = = = = = 1 | 1 2 | 24 96 72 16 1 3 | 576 13824 50688 59904 30024 7200 856 48 1 ...
Links
- Robert Israel, Table of n, a(n) for n = 1..10011 (rows 1 to 71, flattened)
- P. Blasiak, K. A. Penson and A. I. Solomon, The general boson normal ordering problem, arXiv:quant-ph/0402027, 2004.
- P. Blasiak, K. A. Penson and A. I. Solomon, The general boson normal ordering problem, Phys. Lett. A 309 (2003) 198-205.
- P. Codara, O. M. D’Antona, and P. Hell, A simple combinatorial interpretation of certain generalized Bell and Stirling numbers, arXiv:1308.1700v1 [cs.DM], 2013.
- A. Dzhumadildaev and D. Yeliussizov, Path decompositions of digraphs and their applications to Weyl algebra, arXiv preprint arXiv:1408.6764v1 [math.CO], 2014. [Version 1 contained many references to the OEIS, which were removed in Version 2. - _N. J. A. Sloane_, Mar 28 2015]
- Askar Dzhumadil’daev and Damir Yeliussizov, Walks, partitions, and normal ordering, Electronic Journal of Combinatorics, 22(4) (2015), #P4.10.
- Wolfdieter Lang, First 4 rows.
- M. Schork, On the combinatorics of normal ordering bosonic operators and deforming it, J. Phys. A 36 (2003) 4651-4665.
Crossrefs
Programs
-
Maple
T:= (n,k) -> (-1)^k/k!*add((-1)^p*binomial(k,p)*(p*(p-1)*(p-2)*(p-3))^n,p=4..k): seq(seq(T(n,k),k=4..4*n),n=1..10); # Robert Israel, Jan 28 2016
-
Mathematica
a[n_, k_] := (((-1)^k)/k!)*Sum[((-1)^p)*Binomial[k, p]*FactorialPower[p, 4]^n, {p, 4, k}]; Table[a[n, k], {n, 1, 5}, {k, 4, 4*n}] // Flatten (* Jean-François Alcover, Sep 05 2012, updated Jan 28 2016 *)
Formula
a(n, k) = (-1)^k/k! * Sum_{p = 4..k} (-1)^p * binomial(k, p) * fallfac(p, 4)^n, with fallfac(p, 4) := A008279(p, 4) = p*(p - 1)*(p - 2)*(p - 3); 4 <= k <= 4*n, n >= 1, else 0. From eq.(19) with r = 4 of the Blasiak et al. reference.
E^n = Sum_{k = 4..4*n} a(n,k)*x^k*D^k where D is the operator d/dx, and E the operator (x^4)*d^4/dx^4.
The row polynomials R(n,x) are given by the Dobinski-type formula R(n,x) = exp(-x)*Sum_{k >= 0} (k*(k - 1)*(k - 2)*(k - 3))^n*x^k/k!. - Peter Bala, Aug 15 2013
Comments