A122130
Expansion of f(-x^4, -x^16) / psi(-x) in powers of x where psi() is a Ramanujan theta function and f(, ) is Ramanujan's general theta function.
Original entry on oeis.org
1, 1, 1, 2, 2, 3, 4, 5, 7, 9, 11, 14, 18, 22, 27, 34, 41, 50, 61, 73, 88, 106, 126, 150, 179, 211, 249, 294, 345, 404, 473, 551, 642, 747, 865, 1002, 1159, 1336, 1539, 1771, 2033, 2331, 2670, 3052, 3485, 3976, 4527, 5150, 5854, 6642, 7530, 8529, 9647, 10902
Offset: 0
G.f. = 1 + x + x^2 + 2*x^3 + 2*x^4 + 3*x^5 + 4*x^6 + 5*x^7 + 7*x^8 + 9*x^9 + ...
G.f. = q^31 + q^71 + q^111 + 2*q^151 + 2*q^191 + 3*q^231 + 4*q^271 + 5*q^311 + ...
- G. E. Andrews, R. Askey and R. Roy, Special Functions, Cambridge University Press, 1999; Exercise 6(b), p. 591.
- G. E. Andrews, q-series, CBMS Regional Conference Series in Mathematics, 66, Amer. Math. Soc. 1986, see p. 8, Eq. (1.8). MR0858826 (88b:11063)
-
nmax = 100; CoefficientList[Series[Product[1/((1-x^(2*k-1))*(1-x^(20*k-8))*(1-x^(20*k-12))), {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Aug 30 2015 *)
a[ n_] := SeriesCoefficient[ 1 / (QPochhammer[x, x^2] QPochhammer[x^8, x^20] QPochhammer[x^12, x^20]), {x, 0, n}]; (* Michael Somos, Nov 12 2016 *)
a[ n_] := SeriesCoefficient[ Sqrt[2] x^(1/8) QPochhammer[ x^4, x^20] QPochhammer[ x^16, x^20] QPochhammer[x^20] / EllipticTheta[ 2, Pi/4, x^(1/2)], {x, 0, n}] // Simplify; (* Michael Somos, Nov 12 2016 *)
-
{a(n) = if( n<1, n==0, polcoeff( sum(k=1, sqrtint(n+1), x^(k^2-1) / prod(i=1, 2*k-1, 1 - x^i, 1 + x * O(x^(n-k^2+1)))), n))};
A379317
Positive integers with a unique even prime index.
Original entry on oeis.org
3, 6, 7, 12, 13, 14, 15, 19, 24, 26, 28, 29, 30, 33, 35, 37, 38, 43, 48, 51, 52, 53, 56, 58, 60, 61, 65, 66, 69, 70, 71, 74, 75, 76, 77, 79, 86, 89, 93, 95, 96, 101, 102, 104, 106, 107, 112, 113, 116, 119, 120, 122, 123, 130, 131, 132, 138, 139, 140, 141, 142
Offset: 1
The terms together with their prime indices begin:
3: {2}
6: {1,2}
7: {4}
12: {1,1,2}
13: {6}
14: {1,4}
15: {2,3}
19: {8}
24: {1,1,1,2}
26: {1,6}
28: {1,1,4}
29: {10}
30: {1,2,3}
33: {2,5}
35: {3,4}
37: {12}
38: {1,8}
43: {14}
48: {1,1,1,1,2}
Other counts of prime indices:
-
prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
Select[Range[100],Length[Select[prix[#],EvenQ]]==1&]
A352142
Numbers whose prime factorization has all odd indices and all odd exponents.
Original entry on oeis.org
1, 2, 5, 8, 10, 11, 17, 22, 23, 31, 32, 34, 40, 41, 46, 47, 55, 59, 62, 67, 73, 82, 83, 85, 88, 94, 97, 103, 109, 110, 115, 118, 125, 127, 128, 134, 136, 137, 146, 149, 155, 157, 160, 166, 167, 170, 179, 184, 187, 191, 194, 197, 205, 206, 211, 218, 227, 230
Offset: 1
The terms together with their prime indices begin:
1 = 1
2 = prime(1)
5 = prime(3)
8 = prime(1)^3
10 = prime(1) prime(3)
11 = prime(5)
17 = prime(7)
22 = prime(1) prime(5)
23 = prime(9)
31 = prime(11)
32 = prime(1)^5
34 = prime(1) prime(7)
40 = prime(1)^3 prime(3)
The restriction to primes is
A031368.
These partitions are counted by
A117958.
A352140 = even indices with odd exponents, counted by
A055922 aerated.
A352143 = odd indices with odd conjugate indices, counted by
A053253 aerated.
Cf.
A000720,
A028260,
A055396,
A061395,
A106529,
A181819,
A195017,
A241638,
A276078,
A324517,
A324524,
A324525,
A325698,
A325700.
-
Select[Range[100],#==1||And@@OddQ/@PrimePi/@First/@FactorInteger[#]&&And@@OddQ/@Last/@FactorInteger[#]&]
-
from itertools import count, islice
from sympy import primepi, factorint
def A352142_gen(startvalue=1): # generator of terms >= startvalue
return filter(lambda k:all(map(lambda x:x[1]%2 and primepi(x[0])%2, factorint(k).items())),count(max(startvalue,1)))
A352142_list = list(islice(A352142_gen(),30)) # Chai Wah Wu, Mar 18 2022
A351010
Numbers k such that the k-th composition in standard order is a concatenation of twins (x,x).
Original entry on oeis.org
0, 3, 10, 15, 36, 43, 58, 63, 136, 147, 170, 175, 228, 235, 250, 255, 528, 547, 586, 591, 676, 683, 698, 703, 904, 915, 938, 943, 996, 1003, 1018, 1023, 2080, 2115, 2186, 2191, 2340, 2347, 2362, 2367, 2696, 2707, 2730, 2735, 2788, 2795, 2810, 2815, 3600, 3619
Offset: 1
The terms together with their binary expansions and the corresponding compositions begin:
0: 0 ()
3: 11 (1,1)
10: 1010 (2,2)
15: 1111 (1,1,1,1)
36: 100100 (3,3)
43: 101011 (2,2,1,1)
58: 111010 (1,1,2,2)
63: 111111 (1,1,1,1,1,1)
136: 10001000 (4,4)
147: 10010011 (3,3,1,1)
170: 10101010 (2,2,2,2)
175: 10101111 (2,2,1,1,1,1)
228: 11100100 (1,1,3,3)
235: 11101011 (1,1,2,2,1,1)
250: 11111010 (1,1,1,1,2,2)
255: 11111111 (1,1,1,1,1,1,1,1)
The case of twins (binary weight 2) is
A000120.
The Heinz numbers of these compositions are given by
A000290.
All terms are evil numbers
A001969.
The strict case (distinct twins) is
A351009, counted by
A032020 with 0's.
The anti-run case is
A351011, counted by
A003242 interspersed with 0's.
A011782 counts integer compositions.
A351014 counts distinct runs in standard compositions.
Cf.
A018819,
A025047,
A027383,
A035457,
A053738,
A088218,
A106356,
A238279,
A344604,
A351012,
A351015.
Selected statistics of standard compositions:
- Number of distinct parts is
A334028.
Selected classes of standard compositions:
- Constant compositions are
A272919.
-
stc[n_]:=Differences[Prepend[Join@@ Position[Reverse[IntegerDigits[n,2]],1],0]]//Reverse;
Select[Range[0,100],And@@EvenQ/@Length/@Split[stc[#]]&]
A352141
Numbers whose prime factorization has all even indices and all even exponents.
Original entry on oeis.org
1, 9, 49, 81, 169, 361, 441, 729, 841, 1369, 1521, 1849, 2401, 2809, 3249, 3721, 3969, 5041, 6241, 6561, 7569, 7921, 8281, 10201, 11449, 12321, 12769, 13689, 16641, 17161, 17689, 19321, 21609, 22801, 25281, 26569, 28561, 29241, 29929, 32761, 33489, 35721
Offset: 1
The terms together with their prime indices begin:
1 = 1
9 = prime(2)^2
49 = prime(4)^2
81 = prime(2)^4
169 = prime(6)^2
361 = prime(8)^2
441 = prime(2)^2 prime(4)^2
729 = prime(2)^6
841 = prime(10)^2
1369 = prime(12)^2
1521 = prime(2)^2 prime(6)^2
1849 = prime(14)^2
2401 = prime(4)^4
2809 = prime(16)^2
3249 = prime(2)^2 prime(8)^2
3721 = prime(18)^2
3969 = prime(2)^4 prime(4)^2
The second condition alone (all even exponents) is
A000290, counted by
A035363.
The restriction to primes is
A031215.
These partitions are counted by
A035444.
A352140 = even indices with odd exponents, counted by
A055922 aerated.
Cf.
A000720,
A028260,
A055396,
A061395,
A181819,
A195017,
A241638,
A268335,
A276078,
A324524,
A324525,
A324588,
A325698,
A325700,
A352143.
-
Select[Range[1000],#==1||And@@EvenQ/@PrimePi/@First/@FactorInteger[#]&&And@@EvenQ/@Last/@FactorInteger[#]&]
-
from itertools import count, islice
from sympy import factorint, primepi
def A352141_gen(startvalue=1): # generator of terms >= startvalue
return filter(lambda k:all(map(lambda x: not (x[1]%2 or primepi(x[0])%2), factorint(k).items())),count(max(startvalue,1)))
A352141_list = list(islice(A352141_gen(),30)) # Chai Wah Wu, Mar 18 2022
A108961
Number of partitions that are "2-close" to being self-conjugate.
Original entry on oeis.org
1, 1, 2, 3, 3, 5, 7, 9, 12, 16, 20, 26, 33, 41, 51, 64, 79, 97, 119, 144, 175, 212, 254, 305, 365, 434, 516, 612, 722, 851, 1002, 1174, 1375, 1607, 1872, 2179, 2531, 2933, 3395, 3923, 4524, 5211, 5994, 6881, 7891, 9038, 10334, 11804, 13467, 15341, 17460, 19849
Offset: 0
John McKay (mckay(AT)cs.concordia.ca), Jul 22 2005
1 + x + 2*x^2 + 3*x^3 + 3*x^4 + 5*x^5 + 7*x^6 + 9*x^7 + 12*x^8 + 16*x^9 + 20*x^10 + ...
1/q + q^23 + 2*q^47 + 3*q^71 + 3*q^95 + 5*q^119 + 7*q^143 + 9*q^167 + 12*q^191 + ...
- D. M. Bressoud, Analytic and combinatorial generalizations of the Rogers-Ramanujan identities, Mem. Amer. Math. Soc. 24 (1980), no. 227, 54 pp.
- Vaclav Kotesovec, Table of n, a(n) for n = 0..1000
- D. M. Bressoud, Extension of the partition sieve, J. Number Theory 12 no. 1 (1980), 87-100.
- Andrew Sills, Rademacher-Type Formulas for Restricted Partition and Overpartition Functions, Ramanujan Journal, 23 (1-3): 253-264, 2010.
- Michael Somos, Introduction to Ramanujan theta functions
- Eric Weisstein's World of Mathematics, Ramanujan Theta Functions
- Wikipedia, Bailey pair
-
nmax = 50; CoefficientList[Series[Product[(1 + x^k) * (1 + x^(2*k)) / (1 + x^(4*k)), {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Nov 13 2016 *)
-
{a(n) = local(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^4 + A)^2 / (eta(x + A) * eta(x^8 + A)), n))} /* Michael Somos, Oct 17 2006 */
A352140
Numbers whose prime factorization has all even prime indices and all odd exponents.
Original entry on oeis.org
1, 3, 7, 13, 19, 21, 27, 29, 37, 39, 43, 53, 57, 61, 71, 79, 87, 89, 91, 101, 107, 111, 113, 129, 131, 133, 139, 151, 159, 163, 173, 181, 183, 189, 193, 199, 203, 213, 223, 229, 237, 239, 243, 247, 251, 259, 263, 267, 271, 273, 281, 293, 301, 303, 311, 317
Offset: 1
The terms together with their prime indices begin:
1 = 1
3 = prime(2)^1
7 = prime(4)^1
13 = prime(6)^1
19 = prime(8)^1
21 = prime(4)^1 prime(2)^1
27 = prime(2)^3
29 = prime(10)^1
37 = prime(12)^1
39 = prime(6)^1 prime(2)^1
43 = prime(14)^1
53 = prime(16)^1
57 = prime(8)^1 prime(2)^1
61 = prime(18)^1
71 = prime(20)^1
The restriction to primes is
A031215.
These partitions are counted by
A055922 (aerated).
Cf.
A000720,
A028260,
A055396,
A061395,
A181819,
A195017,
A241638,
A276078,
A324517,
A324524,
A324525,
A325698.
-
Select[Range[100],And@@EvenQ/@PrimePi/@First/@FactorInteger[#]&&And@@OddQ/@Last/@FactorInteger[#]&]
-
from sympy import factorint, primepi
def ok(n):
if n%2 == 0: return False
return all(primepi(p)%2==0 and e%2==1 for p, e in factorint(n).items())
print([k for k in range(318) if ok(k)]) # Michael S. Branicky, Mar 12 2022
A351011
Numbers k such that the k-th composition in standard order has even length and alternately equal and unequal parts, i.e., all run-lengths equal to 2.
Original entry on oeis.org
0, 3, 10, 36, 43, 58, 136, 147, 228, 235, 528, 547, 586, 676, 698, 904, 915, 2080, 2115, 2186, 2347, 2362, 2696, 2707, 2788, 2795, 3600, 3619, 3658, 3748, 3770, 8256, 8323, 8458, 8740, 8747, 8762, 9352, 9444, 9451, 10768, 10787, 10826, 11144, 11155, 14368
Offset: 1
The terms together with their binary expansions and standard compositions begin:
0: 0 ()
3: 11 (1,1)
10: 1010 (2,2)
36: 100100 (3,3)
43: 101011 (2,2,1,1)
58: 111010 (1,1,2,2)
136: 10001000 (4,4)
147: 10010011 (3,3,1,1)
228: 11100100 (1,1,3,3)
235: 11101011 (1,1,2,2,1,1)
528: 1000010000 (5,5)
547: 1000100011 (4,4,1,1)
586: 1001001010 (3,3,2,2)
676: 1010100100 (2,2,3,3)
698: 1010111010 (2,2,1,1,2,2)
904: 1110001000 (1,1,4,4)
915: 1110010011 (1,1,3,3,1,1)
The case of twins (binary weight 2) is
A000120.
All terms are evil numbers
A001969.
These compositions are counted by
A003242 interspersed with 0's.
The Heinz numbers of these compositions are
A062503.
This is the anti-run case of
A351010.
A351014 counts distinct runs in standard compositions.
Cf.
A008965,
A018819,
A027383,
A032020,
A035363,
A088218,
A106356,
A122129,
A122134,
A238279,
A351007.
Selected statistics of standard compositions:
- Number of distinct parts is
A334028.
Selected classes of standard compositions:
- Constant compositions are
A272919.
-
stc[n_]:=Differences[Prepend[Join@@ Position[Reverse[IntegerDigits[n,2]],1],0]]//Reverse;
Select[Range[0,1000],And@@(#==2&)/@Length/@Split[stc[#]]&]
A351595
Number of odd-length integer partitions y of n such that y_i > y_{i+1} for all even i.
Original entry on oeis.org
0, 1, 1, 1, 1, 2, 2, 3, 4, 5, 6, 9, 10, 13, 16, 20, 24, 30, 35, 44, 52, 63, 74, 90, 105, 126, 148, 175, 204, 242, 280, 330, 382, 446, 515, 600, 690, 800, 919, 1060, 1214, 1398, 1595, 1830, 2086, 2384, 2711, 3092, 3506, 3988, 4516, 5122, 5788, 6552, 7388, 8345
Offset: 0
The a(1) = 1 through a(12) = 10 partitions (A..C = 10..12):
1 2 3 4 5 6 7 8 9 A B C
221 321 331 332 432 442 443 543
421 431 441 532 542 552
521 531 541 551 642
621 631 632 651
721 641 732
731 741
821 831
33221 921
43221
The ordered version (compositions) is
A000213 shifted right once.
All odd-length partitions are counted by
A027193.
This appears to be the odd-length case of
A122135, even-length
A122134.
The case that is constant at odd indices:
For equality instead of inequality:
- odd-length:
A000009 (except at 0)
-
Table[Length[Select[IntegerPartitions[n],OddQ[Length[#]]&&And@@Table[#[[i]]>#[[i+1]],{i,2,Length[#]-1,2}]&]],{n,0,30}]
A351979
Numbers whose prime factorization has all odd prime indices and all even prime exponents.
Original entry on oeis.org
1, 4, 16, 25, 64, 100, 121, 256, 289, 400, 484, 529, 625, 961, 1024, 1156, 1600, 1681, 1936, 2116, 2209, 2500, 3025, 3481, 3844, 4096, 4489, 4624, 5329, 6400, 6724, 6889, 7225, 7744, 8464, 8836, 9409, 10000, 10609, 11881, 12100, 13225, 13924, 14641, 15376
Offset: 1
The terms together with their prime indices begin:
1: 1
4: prime(1)^2
16: prime(1)^4
25: prime(3)^2
64: prime(1)^6
100: prime(1)^2 prime(3)^2
121: prime(5)^2
256: prime(1)^8
289: prime(7)^2
400: prime(1)^4 prime(3)^2
484: prime(1)^2 prime(5)^2
529: prime(9)^2
625: prime(3)^4
961: prime(11)^2
1024: prime(1)^10
1156: prime(1)^2 prime(7)^2
1600: prime(1)^6 prime(3)^2
1681: prime(13)^2
1936: prime(1)^4 prime(5)^2
The second condition alone (exponents all even) is
A000290, counted by
A035363.
The distinct prime factors of terms all come from
A031368.
The first condition alone (indices all odd) is
A066208, counted by
A000009.
A352140 = even indices with odd exponents, counted by
A055922 (aerated).
Cf.
A000720,
A028260,
A045931,
A055396,
A061395,
A106529,
A181819,
A195017,
A276078,
A324588,
A325698,
A325700.
-
Select[Range[1000],#==1||And@@OddQ/@PrimePi/@First/@FactorInteger[#]&&And@@EvenQ/@Last/@FactorInteger[#]&]
-
from sympy import factorint, primepi
def ok(n):
return all(primepi(p)%2==1 and e%2==0 for p, e in factorint(n).items())
print([k for k in range(15500) if ok(k)]) # Michael S. Branicky, Mar 12 2022
Comments