cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-40 of 67 results. Next

A326565 Number of covering antichains of nonempty, non-singleton subsets of {1..n}, all having the same sum.

Original entry on oeis.org

1, 0, 1, 1, 4, 13, 91, 1318, 73581, 51913025
Offset: 0

Views

Author

Gus Wiseman, Jul 13 2019

Keywords

Comments

An antichain is a finite set of finite sets, none of which is a subset of any other. It is covering if its union is {1..n}. The edge-sums are the sums of vertices in each edge, so for example the edge sums of {{1,3},{2,5},{3,4,5}} are {4,7,12}.

Examples

			The a(2) = 1 through a(5) = 13 antichains:
  {{1,2}}  {{1,2,3}}  {{1,2,3,4}}      {{1,2,3,4,5}}
                      {{1,4},{2,3}}    {{1,2,5},{1,3,4}}
                      {{2,4},{1,2,3}}  {{1,3,5},{2,3,4}}
                      {{3,4},{1,2,4}}  {{1,4,5},{2,3,5}}
                                       {{1,4,5},{1,2,3,4}}
                                       {{2,3,5},{1,2,3,4}}
                                       {{2,4,5},{1,2,3,5}}
                                       {{3,4,5},{1,2,4,5}}
                                       {{1,5},{2,4},{1,2,3}}
                                       {{2,5},{3,4},{1,2,4}}
                                       {{3,5},{1,2,5},{1,3,4}}
                                       {{4,5},{1,3,5},{2,3,4}}
                                       {{1,4,5},{2,3,5},{1,2,3,4}}
		

Crossrefs

Programs

  • Mathematica
    stableSets[u_,Q_]:=If[Length[u]==0,{{}},With[{w=First[u]},Join[stableSets[DeleteCases[u,w],Q],Prepend[#,w]&/@stableSets[DeleteCases[u,r_/;r==w||Q[r,w]||Q[w,r]],Q]]]];
    cleq[n_]:=Select[stableSets[Subsets[Range[n],{2,n}],SubsetQ[#1,#2]||Total[#1]!=Total[#2]&],Union@@#==Range[n]&];
    Table[Length[cleq[n]],{n,0,5}]

Extensions

a(9) from Andrew Howroyd, Aug 14 2019

A361864 Number of set partitions of {1..n} whose block-medians have integer median.

Original entry on oeis.org

1, 0, 3, 6, 30, 96, 461, 2000, 10727, 57092, 342348
Offset: 1

Views

Author

Gus Wiseman, Apr 04 2023

Keywords

Comments

The median of a multiset is either the middle part (for odd length), or the average of the two middle parts (for even length).

Examples

			The a(1) = 1 through a(4) = 6 set partitions:
  {{1}}  .  {{123}}      {{1}{234}}
            {{13}{2}}    {{123}{4}}
            {{1}{2}{3}}  {{1}{2}{34}}
                         {{12}{3}{4}}
                         {{1}{24}{3}}
                         {{13}{2}{4}}
The set partition {{1,2},{3},{4}} has block-medians {3/2,3,4}, with median 3, so is counted under a(4).
		

Crossrefs

For mean instead of median we have A361865.
For sum instead of outer median we have A361911, means A361866.
A000110 counts set partitions.
A000975 counts subsets with integer median, mean A327475.
A013580 appears to count subsets by median, A327481 by mean.
A308037 counts set partitions with integer average block-size.
A325347 counts partitions w/ integer median, complement A307683.
A360005 gives twice median of prime indices, distinct A360457.

Programs

  • Mathematica
    sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]& /@ sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
    Table[Length[Select[sps[Range[n]],IntegerQ[Median[Median/@#]]&]],{n,6}]

A361866 Number of set partitions of {1..n} with block-means summing to an integer.

Original entry on oeis.org

1, 1, 1, 3, 8, 22, 75, 267, 1119, 4965, 22694, 117090, 670621, 3866503, 24113829, 161085223, 1120025702, 8121648620, 62083083115, 492273775141, 4074919882483
Offset: 0

Views

Author

Gus Wiseman, Apr 04 2023

Keywords

Examples

			The a(1) = 1 through a(4) = 8 set partitions:
  {{1}}  {{1}{2}}  {{123}}      {{1}{234}}
                   {{13}{2}}    {{12}{34}}
                   {{1}{2}{3}}  {{123}{4}}
                                {{13}{24}}
                                {{14}{23}}
                                {{1}{24}{3}}
                                {{13}{2}{4}}
                                {{1}{2}{3}{4}}
The set partition y = {{1,2},{3,4}} has block-means {3/2,7/2}, with sum 5, so y is counted under a(4).
		

Crossrefs

For mean instead of sum we have A361865, for median A361864.
For median instead of mean we have A361911.
A000110 counts set partitions.
A067538 counts partitions with integer mean, ranks A326836, strict A102627.
A308037 counts set partitions with integer mean block-size.
A327475 counts subsets with integer mean, median A000975.
A327481 counts subsets by mean, median A013580.

Programs

  • Mathematica
    sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
    Table[Length[Select[sps[Range[n]],IntegerQ[Total[Mean/@#]]&]],{n,6}]

Extensions

a(14)-a(20) from Christian Sievers, May 12 2025

A326566 Number of covering antichains of subsets of {1..n} with equal edge-sums.

Original entry on oeis.org

2, 1, 1, 2, 4, 14, 92, 1320, 73584, 51913039
Offset: 0

Views

Author

Gus Wiseman, Jul 13 2019

Keywords

Comments

An antichain is a finite set of finite sets, none of which is a subset of any other. It is covering if its union is {1..n}. The edge-sums are the sums of vertices in each edge, so for example the edge sums of {{1,3},{2,5},{3,4,5}} are {4,7,12}.

Examples

			The a(1) = 1 through a(5) = 14 antichains:
  {{1}}  {{1,2}}  {{1,2,3}}    {{1,2,3,4}}      {{1,2,3,4,5}}
                  {{3},{1,2}}  {{1,4},{2,3}}    {{1,2,5},{1,3,4}}
                               {{2,4},{1,2,3}}  {{1,3,5},{2,3,4}}
                               {{3,4},{1,2,4}}  {{1,4,5},{2,3,5}}
                                                {{5},{1,4},{2,3}}
                                                {{1,4,5},{1,2,3,4}}
                                                {{2,3,5},{1,2,3,4}}
                                                {{2,4,5},{1,2,3,5}}
                                                {{3,4,5},{1,2,4,5}}
                                                {{1,5},{2,4},{1,2,3}}
                                                {{2,5},{3,4},{1,2,4}}
                                                {{3,5},{1,2,5},{1,3,4}}
                                                {{4,5},{1,3,5},{2,3,4}}
                                                {{1,4,5},{2,3,5},{1,2,3,4}}
		

Crossrefs

Programs

  • Mathematica
    stableSets[u_,Q_]:=If[Length[u]==0,{{}},With[{w=First[u]},Join[stableSets[DeleteCases[u,w],Q],Prepend[#,w]&/@stableSets[DeleteCases[u,r_/;r==w||Q[r,w]||Q[w,r]],Q]]]];
    cleq[n_]:=Select[stableSets[Subsets[Range[n]],SubsetQ[#1,#2]||Total[#1]!=Total[#2]&],Union@@#==Range[n]&];
    Table[Length[cleq[n]],{n,0,5}]

Extensions

a(9) from Andrew Howroyd, Aug 14 2019

A326572 Number of covering antichains of subsets of {1..n}, all having different sums.

Original entry on oeis.org

2, 1, 2, 8, 80, 3015, 803898
Offset: 0

Views

Author

Gus Wiseman, Jul 18 2019

Keywords

Comments

An antichain is a finite set of finite sets, none of which is a subset of any other. It is covering if its union is {1..n}. The edge-sums are the sums of vertices in each edge, so for example the edge sums of {{1,3},{2,5},{3,4,5}} are {4,7,12}.

Examples

			The a(0) = 2 through a(3) = 8 antichains:
  {}    {{1}}  {{1,2}}    {{1,2,3}}
  {{}}         {{1},{2}}  {{1},{2,3}}
                          {{2},{1,3}}
                          {{1,2},{1,3}}
                          {{1,2},{2,3}}
                          {{1},{2},{3}}
                          {{1,3},{2,3}}
                          {{1,2},{1,3},{2,3}}
The a(4) = 80 antichains:
  {1234}  {1}{234}    {1}{2}{34}     {1}{2}{3}{4}       {12}{13}{14}{24}{34}
          {12}{34}    {1}{3}{24}     {1}{23}{24}{34}    {12}{13}{23}{24}{34}
          {13}{24}    {1}{4}{23}     {2}{13}{14}{34}
          {2}{134}    {2}{3}{14}     {12}{13}{14}{24}
          {3}{124}    {1}{23}{24}    {12}{13}{14}{34}
          {4}{123}    {1}{23}{34}    {12}{13}{23}{24}
          {12}{134}   {1}{24}{34}    {12}{13}{23}{34}
          {12}{234}   {2}{13}{14}    {12}{13}{24}{34}
          {13}{124}   {2}{13}{34}    {12}{14}{24}{34}
          {13}{234}   {2}{14}{34}    {12}{23}{24}{34}
          {14}{123}   {3}{14}{24}    {13}{14}{24}{34}
          {14}{234}   {4}{12}{23}    {13}{23}{24}{34}
          {23}{124}   {12}{13}{14}   {12}{13}{14}{234}
          {23}{134}   {12}{13}{24}   {12}{23}{24}{134}
          {24}{134}   {12}{13}{34}   {123}{124}{134}{234}
          {34}{123}   {12}{14}{34}
          {123}{124}  {12}{23}{24}
          {123}{134}  {12}{23}{34}
          {123}{234}  {12}{24}{34}
          {124}{134}  {13}{14}{24}
          {124}{234}  {13}{23}{24}
          {134}{234}  {13}{23}{34}
                      {13}{24}{34}
                      {14}{24}{34}
                      {12}{13}{234}
                      {12}{14}{234}
                      {12}{23}{134}
                      {12}{24}{134}
                      {13}{14}{234}
                      {13}{23}{124}
                      {14}{34}{123}
                      {23}{24}{134}
                      {12}{134}{234}
                      {13}{124}{234}
                      {14}{123}{234}
                      {23}{124}{134}
                      {123}{124}{134}
                      {123}{124}{234}
                      {123}{134}{234}
                      {124}{134}{234}
		

Crossrefs

Antichain covers are A006126.
Set partitions with different block-sums are A275780.
MM-numbers of multiset partitions with different part-sums are A326535.
Antichain covers with equal edge-sums are A326566.
Antichain covers with different edge-sizes are A326570.
The case without singletons is A326571.
Antichains with equal edge-sums are A326574.

Programs

  • Mathematica
    stableSets[u_,Q_]:=If[Length[u]==0,{{}},With[{w=First[u]},Join[stableSets[DeleteCases[u,w],Q],Prepend[#,w]&/@stableSets[DeleteCases[u,r_/;r==w||Q[r,w]||Q[w,r]],Q]]]];
    cleq[n_]:=Select[stableSets[Subsets[Range[n]],SubsetQ[#1,#2]||Total[#1]==Total[#2]&],Union@@#==Range[n]&];
    Table[Length[cleq[n]],{n,0,5}]

A326574 Number of antichains of subsets of {1..n} with equal edge-sums.

Original entry on oeis.org

2, 3, 5, 10, 22, 61, 247, 2096, 81896, 52260575
Offset: 0

Views

Author

Gus Wiseman, Jul 18 2019

Keywords

Comments

An antichain is a finite set of finite sets, none of which is a subset of any other. The edge-sums are the sums of vertices in each edge, so for example the edge sums of {{1,3},{2,5},{3,4,5}} are {4,7,12}.

Examples

			The a(0) = 2 through a(4) = 22 antichains:
  {}    {}     {}       {}           {}
  {{}}  {{}}   {{}}     {{}}         {{}}
        {{1}}  {{1}}    {{1}}        {{1}}
               {{2}}    {{2}}        {{2}}
               {{1,2}}  {{3}}        {{3}}
                        {{1,2}}      {{4}}
                        {{1,3}}      {{1,2}}
                        {{2,3}}      {{1,3}}
                        {{1,2,3}}    {{1,4}}
                        {{3},{1,2}}  {{2,3}}
                                     {{2,4}}
                                     {{3,4}}
                                     {{1,2,3}}
                                     {{1,2,4}}
                                     {{1,3,4}}
                                     {{2,3,4}}
                                     {{1,2,3,4}}
                                     {{3},{1,2}}
                                     {{4},{1,3}}
                                     {{1,4},{2,3}}
                                     {{2,4},{1,2,3}}
                                     {{3,4},{1,2,4}}
		

Crossrefs

Set partitions with equal block-sums are A035470.
Antichains with different edge-sums are A326030.
MM-numbers of multiset partitions with equal part-sums are A326534.
The covering case is A326566.

Programs

  • Mathematica
    stableSets[u_,Q_]:=If[Length[u]==0,{{}},With[{w=First[u]},Join[stableSets[DeleteCases[u,w],Q],Prepend[#,w]&/@stableSets[DeleteCases[u,r_/;r==w||Q[r,w]||Q[w,r]],Q]]]];
    cleqset[set_]:=stableSets[Subsets[set],SubsetQ[#1,#2]||Total[#1]!=Total[#2]&];
    Table[Length[cleqset[Range[n]]],{n,0,5}]

Extensions

a(9) from Andrew Howroyd, Aug 13 2019

A361911 Number of set partitions of {1..n} with block-medians summing to an integer.

Original entry on oeis.org

1, 1, 3, 10, 30, 107, 479, 2249, 11173, 60144, 351086, 2171087, 14138253, 97097101, 701820663, 5303701310, 41838047938, 343716647215, 2935346815495, 25999729551523, 238473713427285, 2261375071834708, 22141326012712122, 223519686318676559, 2323959300370456901
Offset: 1

Views

Author

Gus Wiseman, Apr 14 2023

Keywords

Comments

The median of a multiset is either the middle part (for odd length), or the average of the two middle parts (for even length).

Examples

			The a(1) = 1 through a(4) = 10 set partitions:
  {{1}}  {{1}{2}}  {{123}}      {{1}{234}}
                   {{13}{2}}    {{12}{34}}
                   {{1}{2}{3}}  {{123}{4}}
                                {{124}{3}}
                                {{13}{24}}
                                {{134}{2}}
                                {{14}{23}}
                                {{1}{24}{3}}
                                {{13}{2}{4}}
                                {{1}{2}{3}{4}}
The set partition {{1,4},{2,3}} has medians {5/2,5/2}, with sum 5, so is counted under a(4).
		

Crossrefs

For median instead of sum we have A361864.
For mean of means we have A361865.
For mean instead of median we have A361866.
A000110 counts set partitions.
A000975 counts subsets with integer median, mean A327475.
A013580 appears to count subsets by median, A327481 by mean.
A308037 counts set partitions with integer average block-size.
A325347 = partitions w/ integer median, complement A307683, strict A359907.
A360005 gives twice median of prime indices, distinct A360457.

Programs

  • Mathematica
    sps[{}]:={{}}; sps[set:{i_,_}] := Join@@Function[s,Prepend[#,s]& /@ sps[Complement[set,s]]] /@ Cases[Subsets[set],{i,_}];
    Table[Length[Select[sps[Range[n]], IntegerQ[Total[Median/@#]]&]],{n,10}]

Extensions

a(12)-a(25) from Christian Sievers, Aug 26 2024

A371733 Maximal length of a factorization of n into factors > 1 all having the same sum of prime indices.

Original entry on oeis.org

0, 1, 1, 2, 1, 1, 1, 3, 2, 1, 1, 2, 1, 1, 1, 4, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 3, 1, 1, 2, 1, 5, 1, 1, 1, 3, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 3, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 6, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 4, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 4
Offset: 1

Views

Author

Gus Wiseman, Apr 13 2024

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798. Sum of prime indices is given by A056239.
Factorizations into factors all having the same sum of prime indices are counted by A321455.

Examples

			The factorizations of 588 of this type are (7*7*12), (21*28), (588), so a(588) = 3.
The factorizations of 900 of this type are (5*5*6*6), (9*10*10), (25*36), (30*30), (900), so a(900) = 4.
		

Crossrefs

Positions of 1's are A321453, counted by A321451.
Positions of terms > 1 are A321454, counted by A321452.
Factorizations of this type are counted by A321455, different sums A321469.
For different sums instead of same sums we have A371734.
For set partitions of binary indices we have A371735.
A001055 counts factorizations.
A002219 (aerated) counts biquanimous partitions, ranks A357976.
A112798 lists prime indices, reverse A296150, length A001222, sum A056239.
A321142 and A371794 count non-biquanimous strict partitions.
A371789 counts non-quanimous sets, differences A371790.
A371796 counts quanimous sets, differences A371797.

Programs

  • Mathematica
    facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&, Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]];
    hwt[n_]:=Total[Cases[FactorInteger[n],{p_,k_}:>PrimePi[p]*k]];
    Table[Max[Length/@Select[facs[n],SameQ@@hwt/@#&]],{n,100}]
  • PARI
    A056239(n) = if(1==n, 0, my(f=factor(n)); sum(i=1, #f~, f[i, 2] * primepi(f[i, 1])));
    all_have_same_sum_of_pis(facs) = if(!#facs, 1, (#Set(apply(A056239,facs)) == 1));
    A371733(n, m=n, facs=List([])) = if(1==n, if(all_have_same_sum_of_pis(facs),#facs,0), my(s=0, newfacs); fordiv(n, d, if((d>1)&&(d<=m), newfacs = List(facs); listput(newfacs,d); s = max(s, A371733(n/d, d, newfacs)))); (s)); \\ Antti Karttunen, Jan 20 2025

Extensions

Data section extended to a(108) by Antti Karttunen, Jan 20 2025

A164978 Number of divisors of n*(n+1)/2 that are >= n.

Original entry on oeis.org

1, 1, 2, 2, 2, 2, 3, 4, 3, 2, 4, 4, 2, 4, 7, 4, 3, 3, 4, 7, 4, 2, 6, 8, 3, 4, 7, 4, 4, 4, 5, 9, 4, 4, 11, 6, 2, 4, 11, 6, 4, 4, 4, 11, 6, 2, 8, 11, 4, 6, 7, 4, 4, 7, 11, 11, 4, 2, 8, 8, 2, 6, 16, 11, 7, 4, 4, 7, 8, 4, 9, 9, 2, 6, 11, 8, 8, 4, 8, 18, 5, 2, 8, 15, 4, 4, 11, 6, 6, 11, 8, 7, 4, 4, 18, 10, 3, 8
Offset: 1

Views

Author

Alois P. Heinz, Sep 03 2009

Keywords

Comments

a(n) = 2 <=> the set S = {1..n} has only one decomposition into smaller subsets with equal element sum.

Examples

			a(6) = 2, because 6*7/2=21 with divisors {1,3,7,21}, but only 7 and 21 are >=6. S={1..6} has only one decomposition into smaller subsets with equal element sum: {1,6}, {2,5}, {3,4}.
a(7) = 3; 7*8/2=28 with divisors {1,2,4,7,14,28}, 3 of which are >=7. S={1..7} has 5 decompositions into smaller subsets with equal element sum.
		

Crossrefs

Programs

  • Maple
    with(numtheory):
    a:= n-> nops(select(x-> x>=n, divisors(n*(n+1)/2))):
    seq(a(n), n=1..120);

Formula

a(n) = |{d|n*(n+1)/2 : d>=n}|.

A326571 Number of covering antichains of nonempty, non-singleton subsets of {1..n}, all having different sums.

Original entry on oeis.org

1, 0, 1, 5, 61, 2721, 788221
Offset: 0

Views

Author

Gus Wiseman, Jul 18 2019

Keywords

Comments

An antichain is a finite set of finite sets, none of which is a subset of any other. It is covering if its union is {1..n}. The edge-sums are the sums of vertices in each edge, so for example the edge sums of {{1,3},{2,5},{3,4,5}} are {4,7,12}.

Examples

			The a(3) = 5 antichains:
  {{1,2,3}}
  {{1,3},{2,3}}
  {{1,2},{2,3}}
  {{1,2},{1,3}}
  {{1,2},{1,3},{2,3}}
The a(4) = 61 antichains:
  {1234}  {12}{34}    {12}{13}{14}   {12}{13}{14}{24}   {12}{13}{14}{24}{34}
          {13}{24}    {12}{13}{24}   {12}{13}{14}{34}   {12}{13}{23}{24}{34}
          {12}{134}   {12}{13}{34}   {12}{13}{23}{24}
          {12}{234}   {12}{14}{34}   {12}{13}{23}{34}
          {13}{124}   {12}{23}{24}   {12}{13}{24}{34}
          {13}{234}   {12}{23}{34}   {12}{14}{24}{34}
          {14}{123}   {12}{24}{34}   {12}{23}{24}{34}
          {14}{234}   {13}{14}{24}   {13}{14}{24}{34}
          {23}{124}   {13}{23}{24}   {13}{23}{24}{34}
          {23}{134}   {13}{23}{34}   {12}{13}{14}{234}
          {24}{134}   {13}{24}{34}   {12}{23}{24}{134}
          {34}{123}   {14}{24}{34}   {123}{124}{134}{234}
          {123}{124}  {12}{13}{234}
          {123}{134}  {12}{14}{234}
          {123}{234}  {12}{23}{134}
          {124}{134}  {12}{24}{134}
          {124}{234}  {13}{14}{234}
          {134}{234}  {13}{23}{124}
                      {14}{34}{123}
                      {23}{24}{134}
                      {12}{134}{234}
                      {13}{124}{234}
                      {14}{123}{234}
                      {23}{124}{134}
                      {123}{124}{134}
                      {123}{124}{234}
                      {123}{134}{234}
                      {124}{134}{234}
		

Crossrefs

Antichain covers are A006126.
Set partitions with different block-sums are A275780.
MM-numbers of multiset partitions with different part-sums are A326535.
Antichain covers with equal edge-sums and no singletons are A326565.
Antichain covers with different edge-sizes and no singletons are A326569.
The case with singletons allowed is A326572.
Antichains with equal edge-sums are A326574.

Programs

  • Mathematica
    stableSets[u_,Q_]:=If[Length[u]==0,{{}},With[{w=First[u]},Join[stableSets[DeleteCases[u,w],Q],Prepend[#,w]&/@stableSets[DeleteCases[u,r_/;r==w||Q[r,w]||Q[w,r]],Q]]]];
    cleq[n_]:=Select[stableSets[Subsets[Range[n],{2,n}],SubsetQ[#1,#2]||Total[#1]==Total[#2]&],Union@@#==Range[n]&];
    Table[Length[cleq[n]],{n,0,5}]
Previous Showing 31-40 of 67 results. Next