cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 41-50 of 61 results. Next

A344089 Flattened tetrangle of reversed strict integer partitions, sorted first by length and then colexicographically.

Original entry on oeis.org

1, 2, 3, 1, 2, 4, 1, 3, 5, 2, 3, 1, 4, 6, 2, 4, 1, 5, 1, 2, 3, 7, 3, 4, 2, 5, 1, 6, 1, 2, 4, 8, 3, 5, 2, 6, 1, 7, 1, 3, 4, 1, 2, 5, 9, 4, 5, 3, 6, 2, 7, 1, 8, 2, 3, 4, 1, 3, 5, 1, 2, 6, 10, 4, 6, 3, 7, 2, 8, 1, 9, 2, 3, 5, 1, 4, 5, 1, 3, 6, 1, 2, 7, 1, 2, 3, 4
Offset: 0

Views

Author

Gus Wiseman, May 12 2021

Keywords

Comments

First differs from the revlex (instead of colex) version for partitions of 12.
The zeroth row contains only the empty partition.
A tetrangle is a sequence of finite triangles.

Examples

			Tetrangle begins:
  0: ()
  1: (1)
  2: (2)
  3: (3)(12)
  4: (4)(13)
  5: (5)(23)(14)
  6: (6)(24)(15)(123)
  7: (7)(34)(25)(16)(124)
  8: (8)(35)(26)(17)(134)(125)
  9: (9)(45)(36)(27)(18)(234)(135)(126)
		

Crossrefs

Positions of first appearances are A015724 plus one.
Taking lex instead of colex gives A026793 (non-reversed: A118457).
Triangle sums are A066189.
Reversing all partitions gives A344090.
The non-strict version is A344091.
A319247 sorts strict partitions by Heinz number.
A329631 sorts reversed strict partitions by Heinz number.

Programs

  • Mathematica
    Table[Reverse/@Sort[Select[IntegerPartitions[n],UnsameQ@@#&]],{n,0,30}]

A335122 Irregular triangle whose reversed rows are all integer partitions in graded reverse-lexicographic order.

Original entry on oeis.org

1, 2, 1, 1, 3, 1, 2, 1, 1, 1, 4, 1, 3, 2, 2, 1, 1, 2, 1, 1, 1, 1, 5, 1, 4, 2, 3, 1, 1, 3, 1, 2, 2, 1, 1, 1, 2, 1, 1, 1, 1, 1, 6, 1, 5, 2, 4, 1, 1, 4, 3, 3, 1, 2, 3, 1, 1, 1, 3, 2, 2, 2, 1, 1, 2, 2, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 7, 1, 6, 2, 5, 1, 1, 5, 3, 4, 1, 2, 4
Offset: 0

Views

Author

Gus Wiseman, May 24 2020

Keywords

Comments

First differs from A036036 for partitions of 6.
First differs from A334442 for partitions of 6.
Also reversed partitions in reverse-colexicographic order.

Examples

			The sequence of all reversed partitions begins:
  ()         (1,1,3)        (7)              (8)
  (1)        (1,2,2)        (1,6)            (1,7)
  (2)        (1,1,1,2)      (2,5)            (2,6)
  (1,1)      (1,1,1,1,1)    (1,1,5)          (1,1,6)
  (3)        (6)            (3,4)            (3,5)
  (1,2)      (1,5)          (1,2,4)          (1,2,5)
  (1,1,1)    (2,4)          (1,1,1,4)        (1,1,1,5)
  (4)        (1,1,4)        (1,3,3)          (4,4)
  (1,3)      (3,3)          (2,2,3)          (1,3,4)
  (2,2)      (1,2,3)        (1,1,2,3)        (2,2,4)
  (1,1,2)    (1,1,1,3)      (1,1,1,1,3)      (1,1,2,4)
  (1,1,1,1)  (2,2,2)        (1,2,2,2)        (1,1,1,1,4)
  (5)        (1,1,2,2)      (1,1,1,2,2)      (2,3,3)
  (1,4)      (1,1,1,1,2)    (1,1,1,1,1,2)    (1,1,3,3)
  (2,3)      (1,1,1,1,1,1)  (1,1,1,1,1,1,1)  (1,2,2,3)
We have the following tetrangle of reversed partitions:
                             0
                            (1)
                          (2)(11)
                        (3)(12)(111)
                   (4)(13)(22)(112)(1111)
             (5)(14)(23)(113)(122)(1112)(11111)
  (6)(15)(24)(114)(33)(123)(1113)(222)(1122)(11112)(111111)
		

Crossrefs

Row lengths are A000041.
The version for reversed partitions is A026792.
The version for colex instead of revlex is A026791.
The version for lex instead of revlex is A080576.
The non-reflected version is A080577.
The number of distinct parts is A115623.
Taking Heinz numbers gives A129129.
The version for compositions is A228351.
Partition lengths are A238966.
Partition maxima are A331581.
The length-sensitive version is A334442.
Lexicographically ordered partitions are A193073.
Partitions in colexicographic order are A211992.

Programs

  • Mathematica
    revlexsort[f_,c_]:=OrderedQ[PadRight[{c,f}]];
    Reverse/@Join@@Table[Sort[IntegerPartitions[n],revlexsort],{n,0,8}]

A335124 Minimum part of the n-th reversed integer partition in Abramowitz-Stegun order; a(0) = 0.

Original entry on oeis.org

0, 1, 2, 1, 3, 1, 1, 4, 1, 2, 1, 1, 5, 1, 2, 1, 1, 1, 1, 6, 1, 2, 3, 1, 1, 2, 1, 1, 1, 1, 7, 1, 2, 3, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 8, 1, 2, 3, 4, 1, 1, 1, 2, 2, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 9, 1, 2, 3, 4, 1, 1, 1, 1, 2, 2, 3, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1
Offset: 0

Views

Author

Gus Wiseman, May 24 2020

Keywords

Comments

The ordering of reversed partitions is first by sum, then by length, and finally lexicographically. The version for non-reversed partitions is A335123.

Examples

			Triangle begins:
  0
  1
  2 1
  3 1 1
  4 1 2 1 1
  5 1 2 1 1 1 1
  6 1 2 3 1 1 2 1 1 1 1
  7 1 2 3 1 1 1 2 1 1 1 1 1 1 1
  8 1 2 3 4 1 1 1 2 2 1 1 1 1 2 1 1 1 1 1 1 1
		

Crossrefs

Row lengths are A000041.
Partition minima of A036036.
The length of the same partition is A036043.
The maximum of the same partition is A049085.
The number of distinct parts in the same partition is A103921.
The Heinz number of the same partition is A185974.
The version for non-reversed partitions is A335123.
Lexicographically ordered reversed partitions are A026791.
Partitions in (sum/length/colex) order are A036037.
Partitions in opposite Abramowitz-Stegun (sum/length/revlex) order are A334439.

Programs

  • Mathematica
    Table[If[n==0,{0},Min/@Sort[Reverse/@IntegerPartitions[n]]],{n,0,8}]

Formula

a(n) = A055396(A185974(n)).

A344085 Triangle of squarefree numbers first grouped by greatest prime factor, then sorted by omega, then in increasing order, read by rows.

Original entry on oeis.org

1, 2, 3, 6, 5, 10, 15, 30, 7, 14, 21, 35, 42, 70, 105, 210, 11, 22, 33, 55, 77, 66, 110, 154, 165, 231, 385, 330, 462, 770, 1155, 2310, 13, 26, 39, 65, 91, 143, 78, 130, 182, 195, 273, 286, 429, 455, 715, 1001, 390, 546, 858, 910, 1365, 1430, 2002, 2145, 3003, 5005, 2730, 4290, 6006, 10010, 15015, 30030
Offset: 1

Views

Author

Gus Wiseman, May 11 2021

Keywords

Comments

Differs from A339195 in having 77 before 66.

Examples

			Triangle begins:
   1
   2
   3   6
   5  10  15  30
   7  14  21  35  42  70 105 210
		

Crossrefs

Programs

  • Mathematica
    nn=4;
    GatherBy[SortBy[Select[Range[Times@@Prime/@Range[nn]],SquareFreeQ[#]&&PrimePi[FactorInteger[#][[-1,1]]]<=nn&],PrimeOmega],FactorInteger[#][[-1,1]]&]

A122172 Triangle read by rows relating A074139, A074141, A078436 and A079025.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 3, 3, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 1, 1, 2, 3, 2, 1, 1, 3, 4, 3, 1, 1, 4, 6, 4, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 1, 1, 2, 3, 3, 2, 1, 1, 3, 4, 4, 3, 1, 1, 3, 5, 5, 3, 1, 1, 4, 7, 7, 4, 1, 1, 5, 10, 10, 5, 1, 1, 1, 1, 1, 1, 1, 1
Offset: 0

Views

Author

Alford Arnold, Aug 23 2006

Keywords

Comments

A proper definition is needed for this sequence.
Are the row sums A074139(n) and the row lengths A000041(n)? - R. J. Mathar, May 08 2019 [Not exactly: see below. - M. F. Hasler, Jan 07 2024]
From M. F. Hasler, Jan 06 2024: (Start)
I get this triangle as T(n,k) = # { v in S(p_n), |v| = k }, where p_n is the n-th partition as listed in A036036 or A036037 (which has a nice table of the p's), and S(p) = {0, ..., p[1]} x ... x {0, ..., p[#p]}, the set of vectors v with 0 <= v[i] <= p[i] for all indices i from 1 to #p = number of parts in p.
Then the row sums are indeed the total number of elements in S(p_n) which is equal to the product (p[1]+1)*...*(p[#p]+1) which is also the number of divisors of the Heinz number of p (cf. A185974).
The row lengths are 1 + |p| = 1 + sum of all parts of p (corresponding to the possible values of |v| ranging from 0 to |p|), repeated A000041(|p|) times: A000041(0) = 1 row of length 0+1 for the partition () of 0, A000041(1) = 1 row of length 1+1 for partition (1) of 1; A000041(2) = 2 rows of length 2+1 for the two partitions (2) and (1,1) of 2; A000041(3) = 3 rows of length 3+1 for the 3 partitions {(3), (2,1), (1,1,1)} of 3; etc. (End)

Examples

			The triangle begins:
  1
  1 1
  1 1 1
  1 2 1
  1 1 1 1
  1 2 2 1
  1 3 3 1
  1 1 1 1 1
  1 2 2 2 1
  1 2 3 2 1
  1 3 4 3 1
  1 4 6 4 1
  1 1 1 1 1 1
  1 2 2 2 2 1
  1 2 3 3 2 1
  1 3 4 4 3 1
  1 3 5 5 3 1
  1 4 7 7 4 1
  1 5 10 10 5 1
		

Crossrefs

Cf. A036036 (partitions in A-S order), A036037 (the same, parts reversed), A185974 (corresponding Heinz numbers).

Programs

  • PARI
    A122172_row(n, p=part(n))={my(c=Vec(0, vecsum(p)+1)); forvec(v=[[0, k]| k<-p], c[vecsum(v)+1]++); c} \\ instead of n one can directly give p as 2nd arg
    /* helper function: n-th partition as listed in A036036, A036037 or A185974 */
    part(n)={my(c, r=0); while(n >= c = numbpart(r), n -= c; r++); partitions(r)[n+1]}
    for(n=0,5, forpart(p=n, print(A122172_row(, Vec(p))) )) \\ Illustration. \\ M. F. Hasler, Jan 06 2024

Extensions

More terms from M. F. Hasler, Jan 07 2024

A176210 Triangle read by rows in which row n (n>=3) lists those partitions of n with every part > 2.

Original entry on oeis.org

3, 4, 5, 6, 3, 3, 7, 4, 3, 8, 5, 3, 4, 4, 9, 6, 3, 5, 4, 3, 3, 3, 10, 7, 3, 6, 4, 5, 5, 4, 3, 3, 11, 8, 3, 7, 4, 6, 5, 5, 3, 3, 4, 4, 3, 12, 9, 3, 8, 4, 7, 5, 6, 6, 6, 3, 3, 5, 4, 3, 4, 4, 4, 3, 3, 3, 3, 13, 10, 3, 9, 4, 8, 5, 7, 6, 7, 3, 3, 6, 4, 3, 5, 5, 3, 5, 4, 4, 4, 3, 3, 3
Offset: 3

Views

Author

Vladimir Shevelev, Apr 12 2010

Keywords

Comments

Each partition is listed in nonincreasing order.
The partitions in each row are listed in decreasing lexicographic order.
Also the numbers of vertices of the connected components of the 2-regular simple graphs on n vertices.

Examples

			For n in {0,1,2} there are no parts; so those rows are empty.
3 (one partition only)
4 (one partition only)
5 (one partition only)
6; 3, 3
7; 4, 3
8; 5, 3; 4, 4
9; 6, 3; 5, 4; 3, 3, 3
10; 7, 3; 6, 4; 5, 5; 4, 3, 3
11; 8, 3; 7, 4; 6, 5; 5, 3, 3; 4, 4, 3
12; 9, 3; 8, 4; 7, 5; 6, 6; 6, 3, 3; 5, 4, 3; 4, 4, 4; 3, 3, 3, 3
13; 10, 3; 9, 4; 8, 5; 7, 6; 7, 3, 3; 6, 4, 3; 5, 5, 3; 5, 4, 4; 4, 3, 3, 3
		

Crossrefs

The number of partitions in each row is A008483.
The length of each row is A177739.
The same ordering is used in A080577 and A138136 (for other orderings see A036036 and A036037).

Programs

  • Magma
    &cat[ &cat RestrictedPartitions(n,{3..n}):n in [1..13]];

Extensions

Extensively edited by Jason Kimberley, May 13 2010

A176211 Numbers of the form Product_{m_i >= 3} A000211(m_i), possibly repeated, in natural order.

Original entry on oeis.org

6, 9, 13, 20, 31, 36, 49, 54, 78, 78, 81, 117, 120, 125, 169, 180, 186, 201, 216, 260, 279, 294, 324, 324, 400, 403, 441, 468, 468, 486, 523, 620, 637, 702, 702, 720, 729, 750, 845, 961, 980, 1014, 1014, 1053, 1080, 1116, 1125, 1206, 1296, 1366, 1519, 1521, 1560, 1560, 1620, 1625, 1674, 1764, 1809, 1944, 1944, 2197, 2209
Offset: 1

Views

Author

Vladimir Shevelev, Apr 12 2010

Keywords

Comments

Values represented by more than one set of indices are listed once per set; otherwise A176212 results.
Each term is a permanent of a quadratic symmetric (0,1) matrix with 1's on the main diagonal and exactly three 1's in each row and column.
For fixed Sum m_i=n with m_i >= 3, Product A000211(m_i) >= 6(4/3)^(n-3) and max(Product A000211(m_i)) = 6^((n-h)/3)*floor((3/2)^h), where h is the remainder of n (mod 3).

Crossrefs

Programs

  • PARI
    f(n) = fibonacci(n+1) + fibonacci(n-1) + 2; \\ A000211
    lista(nn) = {my(v = vector(nn, k, f(k+2))); my(vmax = vecmax(v)); my(w =  vector(nn, k, [0, logint(vmax, v[k])])); my(list=List()); forvec(x = w, if (vecmax(x), my(y = prod(k=1, #v, v[k]^x[k])); if (y <= vmax, listput(list, y)););); Vec(vecsort(list));}
    lista(14) \\ Michel Marcus, Jan 06 2021

A181317 Triangle in which n-th row lists all partitions of n, in the order of increasing smallest numbers of prime signatures.

Original entry on oeis.org

1, 2, 1, 1, 3, 2, 1, 1, 1, 1, 4, 3, 1, 2, 2, 2, 1, 1, 1, 1, 1, 1, 5, 4, 1, 3, 2, 3, 1, 1, 2, 2, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 6, 5, 1, 4, 2, 3, 3, 4, 1, 1, 3, 2, 1, 3, 1, 1, 1, 2, 2, 2, 2, 2, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 7, 6, 1, 5, 2, 4, 3, 5, 1, 1, 4, 2, 1, 3, 3, 1, 4, 1, 1, 1, 3, 2, 2, 3, 2, 1, 1, 2
Offset: 1

Views

Author

Alois P. Heinz, Jan 26 2011

Keywords

Comments

The parts of each partition are listed in decreasing order.
Differs from A080577 at a(48) and from A036037 at a(56). A181087 uses the same order for all partitions.

Examples

			[3,1,1,1] and [2,2,2] are both partitions of 6, the smallest numbers having these prime signatures are 2^3*3^1*5^1*7^1=840 and 2^2*3^2*5^2=900, thus [3,1,1,1] < [2,2,2] in this order.
Triangle begins:
  [1];
  [2], [1,1];
  [3], [2,1], [1,1,1];
  [4], [3,1], [2,2], [2,1,1], [1,1,1,1];
  [5], [4,1], [3,2], [3,1,1], [2,2,1], [2,1,1,1], [1,1,1,1,1];
  [6], [5,1], [4,2], [3,3], [4,1,1], [3,2,1], [3,1,1,1], [2,2,2];
  ...
		

Crossrefs

Programs

  • Maple
    a:= proc(n) local b, ll;  # gives all parts of partitions of row n
      b:= proc(n,i,l)
            if n<0 then
          elif n=0 then ll:= ll, [mul(ithprime(t)^l[t], t=1..nops(l)), l]
          elif i=0 then
          else b(n-i, i, [l[], i]), b(n, i-1, l)
            fi
      end;
      ll:= NULL; b(n,n,[]);
      map(h-> h[2][], sort([ll], (x,y)-> x[1]
    				
  • Mathematica
    f[P_] := Times @@ (Prime[Range[Length[P]]]^P);
    row[n_] := SortBy[IntegerPartitions[n], f];
    Array[row, 7] // Flatten (* Jean-François Alcover, Feb 16 2021 *)

A330370 Irregular triangle read by rows T(n,m) in which row n lists all partitions of n ordered by their k-th ranks, or by their k-th largest parts if all their k-th ranks are zeros, with k = 1..n.

Original entry on oeis.org

1, 2, 1, 1, 3, 2, 1, 1, 1, 1, 4, 3, 1, 2, 2, 2, 1, 1, 1, 1, 1, 1, 5, 4, 1, 3, 2, 3, 1, 1, 2, 2, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 6, 5, 1, 4, 2, 3, 3, 4, 1, 1, 3, 2, 1, 3, 1, 1, 1, 2, 2, 2, 2, 2, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 7, 6, 1, 5, 2, 4, 3, 5, 1, 1, 4, 2, 1, 3, 3, 1, 4, 1, 1, 1, 3, 2, 2, 3, 2, 1, 1, 3
Offset: 1

Views

Author

Omar E. Pol, Dec 12 2019

Keywords

Comments

Theorem: the k-th part of a partition in nonincreasing order of a positive integer equals the number of parts >= k of its conjugate partition.
Example: for n = 9 consider the partition [5, 3, 1]. The first part is 5, so the conjugate partition [3, 2, 2, 1, 1] has five parts >= 1. The second part is 3, so the conjugate partition has three parts >= 2. The third part is 1, so the conjugate partition has only one part >= 3. And vice versa, consider now the partition [3, 2, 2, 1, 1]. The first part is 3, so the conjugate partition [5, 3, 1] has three parts >= 1. The second part is 2, so the conjugate partition has two parts >= 2. The third part is 2, so the conjugate partition has two parts >= 3. The fourth part is 1, so the conjugate partition has only one part >= 4. The fifth part is 1, so the conjugate partition has only one part >= 5.
Corollary: the difference between the k-th part and the (k+1)-st part of a partition in nonincreasing order of a positive integer equals the number of k's in its conjugate partition.
Example: consider the partition [5, 3, 1]. The difference between the first and the second parts is 5 - 3 = 2, which equals the number of 1's in its conjugate partition [3, 2, 2, 1, 1]. The difference between the second and third parts is 3 - 1 = 2, which equals the number of 2's in its conjugate partition. The difference between the third part and the fourth (virtual) part is 1 - 0 = 1, which equals the number of 3's in its conjugate partition. And vice versa, consider the partition [3, 2, 2, 1, 1]. The difference between the first and second parts is 3 - 2 = 1, which equals the number of 1's in its conjugate partition [5, 3, 1]. The difference between the second and third parts is 2 - 2 = 0, which equals the number of 2's in its conjugate partition. The difference between the third and fourth parts is 2 - 1 = 1, which equals the number of 3's in its conjugate partition, and so on.
Self-conjugate partitions are included in all the above comments.
A proof without words is as shown below:
.
+------------------------+
| +--------------------+ |
| | +----------------+ | |
| | | | | |
v v v P2 FD k | | |
| | |
+--------> * * * 3 1 1 --+ | |
| +------> * * 2 0 2 | |
| +------> * * 2 1 3 ----+ |
| | +----> * 1 0 4 |
| | +----> * 1 1 5 ------+
| | |
| | | P1 5 3 1
| | |
| | | FD 2 2 1
| | |
| | | k 1 2 3
| | |
| | | | | |
| | +-------+ | |
| +-----------+ |
+---------------+
.
Every partition of n has n ranks.
The k-th rank of a partition is the k-th part minus the number of parts >= k.
In accordance with the above theorem, the k-th rank of a partition is also the number of parts >= k of its conjugate partition minus the number of parts >= k of the partition.
All ranks of a partition are zeros if and only if the partition is a self-conjugate partition.
The list of ranks of a partition of n equals the list of ranks multipled by -1 of its conjugate partition.
For example, the nine ranks of the partition [5, 3, 1] are [2, 1, -1, -1, -1, -1, 0, 0, 0], and the nine ranks of its conjugate partition [3, 2, 2, 1, 1] are [-2, -1, 1, 1, 1, 1, 0, 0, 0].
Note that the first rank coincides with the Dyson's rank because the first part of a partition is also the largest part, and the number of parts >= 1 is also the total number of parts.
In this triangle the partitions of n appears ordered by their first rank. The partitions that have the same first rank appears ordered by their second rank. The partitions that have the same first rank and the same second rank appears ordered by their third rank, and so on. The partitions that have all k-ranks equal zero appears ordered by their largest parts, then by their second largest parts, then by their third largest parts, and so on.
Note that a partition and its conjugate partition both are equidistants from the center of the list of partitions of n.
The first ranks of the partitions of this triangle give A330368.
For more information about the k-th ranks see A208478.
First differs from A080577 at a(48), and from A036037 at a(56), and from A181317 at a(105).

Examples

			Triangle begins:
  [1];
  [2], [1,1];
  [3], [2,1], [1,1,1];
  [4], [3,1], [2,2], [2,1,1], [1,1,1,1];
  [5], [4,1], [3,2], [3,1,1], [2,2,1], [2,1,1,1], [1,1,1,1,1];
  [6], [5,1], [4,2], [3,3], [4,1,1], [3,2,1], [3,1,1,1], [2,2,2], ...
  ...
Illustration of initial terms with a symmetric arrangement (note that the self-conjugate partitions are located in the main diagonal):
.
  1    1 1    1 1 1    1 1 1 1    1 1 1 1 1           1 1 1 1 1 1
  *    * *    * * *    * * * *    * * * * *           * * * * * *
  2
  *
  *
  3           2 1      2 1 1      2 1 1 1             2 1 1 1 1
  *           * *      * * *      * * * *             * * * * *
  *           *        *          *                   *
  *
  4           3 1      2 2        2 2 1               2 2 1 1
  *           * *      * *        * * *               * * * *
  *           *        * *        * *                 * *
  *           *
  *
  5           4 1      3 2        3 1 1               2 2 2
  *           * *      * *        * * *               * * *
  *           *        * *        *                   * * *
  *           *        *          *
  *           *                                       3 1 1 1
  *                                                   * * * *
                                                      *
                                                      *
.
  6           5 1      4 2        3 3      4 1 1      3 2 1
  *           * *      * *        * *      * * *      * * *
  *           *        * *        * *      *          * *
  *           *        *          * *      *          *
  *           *        *                   *
  *           *
  *
For n = 9 the 9th row of the triangle contains the partitions ordered as shown below:
---------------------------------------------------------------------------------
                                                                Ranks
          Conjugate
Label       with        Partitions                k = 1  2  3  4  5  6  7  8  9
---------------------------------------------------------------------------------
   1         30         [9]                           8 -1 -1 -1 -1 -1 -1 -1 -1
   2         29         [8, 1]                        6  0 -1 -1 -1 -1 -1 -1  0
   3         28         [7, 2]                        5  0 -1 -1 -1 -1 -1  0  0
   4         27         [6, 3]                        4  1 -2 -1 -1 -1  0  0  0
   5         26         [7, 1, 1]                     4  0  0 -1 -1 -1 -1  0  0
   6         25         [5, 4]                        3  2 -2 -2 -1  0  0  0  0
   7         24         [6, 2, 1]                     3  0  0 -1 -1 -1  0  0  0
   8         23         [5, 3, 1]                     2  1 -1 -1 -1  0  0  0  0
   9         22         [6, 1, 1, 1]                  2  0  0  0 -1 -1  0  0  0
  10         21         [5, 2, 2]                     2 -1  1 -1 -1  0  0  0  0
  11         20         [4, 4, 1]                     1  2 -1 -2  0  0  0  0  0
  12         19         [5, 2, 1, 1]                  1  0  0  0 -1  0  0  0  0
  13         18         [4, 3, 2]                     1  0  0 -1  0  0  0  0  0
  14         17         [4, 3, 1, 1]                  0  1 -1  0  0  0  0  0  0
  15  (self-conjugate)  [5, 1, 1, 1, 1]  All zeros -> 0  0  0  0  0  0  0  0  0
  16  (self-conjugate)  [3, 3, 3]        All zeros -> 0  0  0  0  0  0  0  0  0
  17         14         [4, 2, 2, 1]                  0 -1  1  0  0  0  0  0  0
  18         13         [3, 3, 2, 1]                 -1  0  0  1  0  0  0  0  0
  19         12         [4, 2, 1, 1, 1]              -1  0  0  0  1  0  0  0  0
  20         11         [3, 2, 2, 2]                 -1 -2  1  2  0  0  0  0  0
  21         10         [3, 3, 1, 1, 1]              -2  1 -1  1  1  0  0  0  0
  22          9         [4, 1, 1, 1, 1, 1]           -2  0  0  0  1  1  0  0  0
  23          8         [3, 2, 2, 1, 1]              -2 -1  1  1  1  0  0  0  0
  24          7         [3, 2, 1, 1, 1, 1]           -3  0  0  1  1  1  0  0  0
  25          6         [2, 2, 2, 2, 1]              -3 -2  2  2  1  0  0  0  0
  26          5         [3, 1, 1, 1, 1, 1, 1]        -4  0  0  1  1  1  1  0  0
  27          4         [2, 2, 2, 1, 1, 1]           -4 -1  2  1  1  1  0  0  0
  28          3         [2, 2, 1, 1, 1, 1, 1]        -5  0  1  1  1  1  1  0  0
  29          2         [2, 1, 1, 1, 1, 1, 1, 1]     -6  0  1  1  1  1  1  1  0
  30          1         [1, 1, 1, 1, 1, 1, 1, 1, 1]  -8  1  1  1  1  1  1  1  1
.
Two examples of the order of partitions:
1) The partitions [6, 3] and [7, 1, 1] both have their first rank equal to 4, so they are ordered by their sencond rank.
2) The self-conjugate partitions [5, 1, 1, 1, 1] and [3, 3, 3] both have all their ranks equal to zero, so they are ordered by their first part.
		

Crossrefs

Row n contains A000041(n) partitions.
Row n has length A006128(n).
The sum of n-th row is A066186(n).
For "k-th rank" of a partition see also: A181187, A208478, A208479, A208482, A208483.

A344090 Flattened tetrangle of strict integer partitions, sorted first by sum, then by length, then lexicographically.

Original entry on oeis.org

1, 2, 3, 2, 1, 4, 3, 1, 5, 3, 2, 4, 1, 6, 4, 2, 5, 1, 3, 2, 1, 7, 4, 3, 5, 2, 6, 1, 4, 2, 1, 8, 5, 3, 6, 2, 7, 1, 4, 3, 1, 5, 2, 1, 9, 5, 4, 6, 3, 7, 2, 8, 1, 4, 3, 2, 5, 3, 1, 6, 2, 1, 10, 6, 4, 7, 3, 8, 2, 9, 1, 5, 3, 2, 5, 4, 1, 6, 3, 1, 7, 2, 1, 4, 3, 2, 1
Offset: 0

Views

Author

Gus Wiseman, May 12 2021

Keywords

Comments

The zeroth row contains only the empty partition.
A tetrangle is a sequence of finite triangles.

Examples

			Tetrangle begins:
  0: ()
  1: (1)
  2: (2)
  3: (3)(21)
  4: (4)(31)
  5: (5)(32)(41)
  6: (6)(42)(51)(321)
  7: (7)(43)(52)(61)(421)
  8: (8)(53)(62)(71)(431)(521)
  9: (9)(54)(63)(72)(81)(432)(531)(621)
		

Crossrefs

Starting with reversed partitions gives A026793.
The version for compositions is A124734.
Showing partitions as Heinz numbers gives A246867.
The non-strict version is A334301 (reversed: A036036).
Ignoring length gives A344086 (reversed: A246688).
Same as A344089 with partitions reversed.
The version for revlex instead of lex is A344092.
A026791 reads off lexicographically ordered reversed partitions.
A080577 reads off reverse-lexicographically ordered partitions.
A112798 reads off reversed partitions by Heinz number.
A296150 reads off partitions by Heinz number.

Programs

  • Mathematica
    Table[Sort[Select[IntegerPartitions[n],UnsameQ@@#&]],{n,0,10}]
Previous Showing 41-50 of 61 results. Next