A128782
a(n) = n^2*4^n.
Original entry on oeis.org
0, 4, 64, 576, 4096, 25600, 147456, 802816, 4194304, 21233664, 104857600, 507510784, 2415919104, 11341398016, 52613349376, 241591910400, 1099511627776, 4964982194176, 22265110462464, 99230924406784, 439804651110400, 1939538511396864, 8514618045497344, 37225065669984256
Offset: 0
-
[n^2*4^n: n in [0..20]]; // Vincenzo Librandi, Feb 06 2013
-
Table[n^2 * 4^n, {n, 0, 30}] (* Vincenzo Librandi, Feb 06 2013 *)
LinearRecurrence[{12,-48,64},{0,4,64},30] (* Harvey P. Dale, May 13 2025 *)
Original entry on oeis.org
0, 2, 32, 216, 1024, 4000, 13824, 43904, 131072, 373248, 1024000, 2725888, 7077888, 17997824, 44957696, 110592000, 268435456, 643956736, 1528823808, 3596091392, 8388608000, 19421724672, 44660948992, 102064193536, 231928233984
Offset: 0
-
[n^3*2^n: n in [0..30]]; // Vincenzo Librandi, Feb 07 2013
-
CoefficientList[Series[2 x (1 + 8 x + 4 x^2)/(1 - 2 x)^4, {x, 0, 30}], x] (* Vincenzo Librandi, Feb 07 2013 *)
Table[n^3 2^n,{n,0,30}] (* or *) LinearRecurrence[{8,-24,32,-16},{0,2,32,216},30] (* Harvey P. Dale, Jun 14 2013 *)
Original entry on oeis.org
0, 9, 162, 2187, 26244, 295245, 3188646, 33480783, 344373768, 3486784401, 34867844010, 345191655699, 3389154437772, 33044255768277, 320275094369454, 3088366981419735, 29648323021629456, 283512088894331673, 2701703435345984178, 25666182635786849691, 243153309181138576020
Offset: 0
A228152
Triangle read by rows: T(n,k) = maximal external path length of AVL trees of height n with k (leaf-) nodes, n>=0, fibonacci(n+2)<=k<=2^n.
Original entry on oeis.org
0, 2, 5, 8, 12, 16, 20, 24, 25, 30, 35, 40, 44, 49, 54, 59, 64, 50, 56, 62, 68, 73, 79, 85, 91, 97, 102, 107, 113, 119, 125, 131, 136, 142, 148, 154, 160, 96, 103, 110, 117, 123, 130, 137, 144, 151, 157, 163, 170, 177, 184, 191, 197, 204, 211, 218, 225, 231
Offset: 0
T(2,3) = 5 because in the (two) AVL trees of height 2 with 3 (leaf-) nodes one has depth 1 and two have depth 2:
o o
/ \ / \
o 1 1 o
/ \ / \
2 2 2 2
so that the sum of depths is 5 for both trees.
Triangle begins:
0
. 2
. . 5 8
. . . . 12 16 20 24
. . . . . . . 25 30 35 40 44 49 54 59 64
. . . . . . . . . . . . 50 56 62 68 73 79 85 91 97 102 ...
. . . . . . . . . . . . . . . . . . . . 96 103 ...
- D. E. Knuth, Art of Computer Programming, Vol. 3, Sect. 6.2.3 (7) and (8).
Row maxima give: n*2^n =
A036289(n).
Number of AVL trees read by rows gives:
A143897.
Triangle read by columns gives:
A228153.
The infimum of all external path lengths of binary trees with k (leaf-) nodes is:
A003314(k) for k>0.
Number of AVL trees read by columns gives:
A217298.
-
with(combinat): F:=fibonacci:
T:= proc(n, k) option remember; `if`(n<1, 0, max(seq([k+T(n-1,t)+
T(n-1,k-t), k+T(n-1,t) +T(n-2,k-t)][], t=F(n+1)..k-1)))
end:
seq(seq(T(n, k), k=F(n+2)..2^n), n=0..7); # Alois P. Heinz, Aug 14 2013
-
maxNods = 100; Clear[T, A029837, A072649, A036289, A228155]; T[0, 1] = 0; A029837[1] = 0; A072649[1] = 1; A228155[1] = 0; For[k = 2, k <= maxNods, k++, A029837[k] = maxNods; A072649[k] = 0; A228155u = 0; For[kL = 1, kL <= Floor[k/2], kL++, For[hL = A029837[kL], hL <= A072649[kL] - 1, hL++, For[hR = Max[hL - 1, A029837[k - kL]], hR <= Min[hL + 1, A072649[k - kL] - 1], hR++, maxDepthSum = k + T[hL, kL] + T[hR, k - kL]; A228155u = Max[maxDepthSum, A228155u]; h = Max[hL, hR] + 1; If[ !IntegerQ[T[h, k]], T[h, k] = maxDepthSum, T[h, k] = Max[maxDepthSum, T[h, k]]]; A029837[k] = Min[h, A029837[k]]; If[ !IntegerQ[A036289[h]], A036289[h] = maxDepthSum, A036289[h] = Max[maxDepthSum, A036289[h]]]; A072649[k] = Max[h + 1, A072649[k]]; ]]]; A228155[k] = A228155u]; k =.; Table[T[n, k], {n, 0, maxNods}, {k, 1, maxNods}] // Flatten // Select[#, IntegerQ]& (* Jean-François Alcover, Aug 14 2013, translated and adapted from Herbert Eberle's MuPAD program *)
-
maxNods:=100: // max number of leaves (= external nodes)
// Triangle T for all AVL trees with <= maxNods leaves:
delete T:
// table T indexed [h, k] (h=height, k=number of leaves):
T[0, 1]:=0:
// A029837 indexed [k], min height of tree with k leaves:
A029837:=array(1..maxNods): A029837[1]:=0:
// A072649 indexed [k], 1+max height of AVL tree with k leaves:
A072649:=array(1..maxNods): A072649[1]:=1:
// A036289 indexed [h], max depthsum of all height h AVL trees:
A036289:=array(1..maxNods):
// A228155 indexed [k], max depthsum of all AVL trees with k leaves:
A228155:=array(1..maxNods): A228155[1]:=0:
for k from 2 to maxNods do:
A029837[k]:=maxNods: // try infinity for the min height
A072649[k]:=0:
A228155u:=0:
// Put together 2 AVL trees:
for kL from 1 to floor(k/2) do:
// kL leaves in the left tree
for hL from A029837[kL] to A072649[kL]-1 do:
for hR from max(hL-1, A029837[k-kL])
to min(hL+1, A072649[k-kL]-1) do:
// k-kL leaves in the right subtree
maxDepthSum:=T[hL, kL]+T[hR, k-kL]+k:
A228155u:=max(maxDepthSum, A228155u):
h:=max(hL, hR)+1:
if type(T[h, k]) <> DOM_INT then // T[h, k] uninit
T[h, k]:=maxDepthSum:
else
T[h, k]:=max(maxDepthSum, T[h, k]):
end_if:
A029837[k]:=min(h, A029837[k]):
if type(A036289[h]) <> DOM_INT then
A036289[h]:=maxDepthSum:
else
A036289[h]:=max(maxDepthSum, A036289[h]):
end_if:
A072649[k]:=max(h+1, A072649[k]):
end_for: // hR
end_for: // hL
end_for: // kL
A228155[k]:=A228155u:
end_for: // k
A228153
Triangle read by columns: T(n,k) = maximal external path length of AVL trees of height n with k (leaf-) nodes, k>=1, A029837(k)<=n<A072649(k).
Original entry on oeis.org
0, 2, 5, 8, 12, 16, 20, 24, 25, 30, 35, 40, 44, 49, 50, 54, 56, 59, 62, 64, 68, 73, 79, 85, 91, 97, 96, 102, 103, 107, 110, 113, 117, 119, 123, 125, 130, 131, 137, 136, 144, 142, 151, 148, 157, 154, 163, 160, 170, 177, 184, 180, 191, 188, 197, 196, 204, 204
Offset: 1
In the (two) AVL trees of height 2 the 3 external nodes (leaves) have once depth 1 and twice depth 2:
o o
/ \ / \
o 1 1 o
/ \ / \
2 2 2 2
so that the sum of depths is 5 for both trees.
Triangle begins:
0
. 2
. . 5 8
. . . . 12 16 20 24
. . . . . . . 25 30 35 40 44 49 54 59 64
. . . . . . . . . . . . 50 56 62 68 73 79 85 91 97 102 ...
. . . . . . . . . . . . . . . . . . . . 96 103 ...
- D. E. Knuth, Art of Computer Programming, Vol. 3, Sect. 6.2.3 (7) and (8).
Triangle read by rows gives:
A228152.
Row maxima give: n*2^n =
A036289(n).
Number of AVL trees read by rows gives:
A143897.
The infimum of all external path lengths of binary trees with k (leaf-) nodes is:
A003314(k) for k>0.
Number of AVL trees read by columns gives:
A217298.
-
maxNods = 100; Clear[T, A029837, A072649, A036289, A228155]; T[0, 1] = 0; A029837[1] = 0; A072649[1] = 1; A228155[1] = 0; For[k = 2, k <= maxNods, k++, A029837[k] = maxNods; A072649[k] = 0; A228155u = 0; For[kL = 1, kL <= Floor[k/2], kL++, For[hL = A029837[kL], hL <= A072649[kL] - 1, hL++, For[hR = Max[hL - 1, A029837[k - kL]], hR <= Min[hL + 1, A072649[k - kL] - 1], hR++, maxDepthSum = k + T[hL, kL] + T[hR, k - kL]; A228155u = Max[maxDepthSum, A228155u]; h = Max[hL, hR] + 1; If[ !IntegerQ[T[h, k]], T[h, k] = maxDepthSum, T[h, k] = Max[maxDepthSum, T[h, k]]]; A029837[k] = Min[h, A029837[k]]; If[ !IntegerQ[A036289[h]], A036289[h] = maxDepthSum, A036289[h] = Max[maxDepthSum, A036289[h]]]; A072649[k] = Max[h + 1, A072649[k]]; ]]]; A228155[k] = A228155u]; k =.; Table[ Select[ Table[T[n, k], {n, A029837[k], A072649[k] - 1}], IntegerQ], {k, 1, maxNods}] // Flatten (* Jean-François Alcover, Aug 19 2013, translated and adapted from Herbert Eberle's MuPAD program *)
-
maxNods:=100: // max number of leaves (= external nodes)
// Triangle T for all AVL trees with <= maxNods leaves:
delete T:
// table T indexed [h, k] (h=height, k=number of leaves):
T[0, 1]:=0:
// A029837 indexed [k], min height of tree with k leaves:
A029837:=array(1..maxNods): A029837[1]:=0:
// A072649 indexed [k], 1+max height of AVL tree with k leaves:
A072649:=array(1..maxNods): A072649[1]:=1:
// A036289 indexed [h], max depthsum of all height h AVL trees:
A036289:=array(1..maxNods):
// A228155 indexed [k], max depthsum of all AVL trees with k leaves:
A228155:=array(1..maxNods): A228155[1]:=0:
for k from 2 to maxNods do:
A029837[k]:=maxNods: // try infinity for the min height
A072649[k]:=0:
A228155u:=0:
// Put together 2 AVL trees:
for kL from 1 to floor(k/2) do:
// kL leaves in the left tree
for hL from A029837[kL] to A072649[kL]-1 do:
for hR from max(hL-1, A029837[k-kL])
to min(hL+1, A072649[k-kL]-1) do:
// k-kL leaves in the right subtree
maxDepthSum:=T[hL, kL]+T[hR, k-kL]+k:
A228155u:=max(maxDepthSum, A228155u):
h:=max(hL, hR)+1:
if type(T[h, k]) <> DOM_INT then // T[h, k] uninit
T[h, k]:=maxDepthSum:
else
T[h, k]:=max(maxDepthSum, T[h, k]):
end_if:
A029837[k]:=min(h, A029837[k]):
if type(A036289[h]) <> DOM_INT then
A036289[h]:=maxDepthSum:
else
A036289[h]:=max(maxDepthSum, A036289[h]):
end_if:
A072649[k]:=max(h+1, A072649[k]):
end_for: // hR
end_for: // hL
end_for: // kL
A228155[k]:=A228155u:
end_for: // k
A228155
Maximal external path length of AVL trees with n (leaf-) nodes.
Original entry on oeis.org
0, 2, 5, 8, 12, 16, 20, 25, 30, 35, 40, 44, 50, 56, 62, 68, 73, 79, 85, 91, 97, 103, 110, 117, 123, 130, 137, 144, 151, 157, 163, 170, 177, 184, 191, 197, 204, 211, 219, 227, 235, 243, 250, 257, 265, 273, 281, 289, 296, 304, 312, 320, 328, 335, 342, 349, 356
Offset: 1
The (two) AVL trees with 3 (leaf-) nodes have one with depth 1 and two with depth 2:
o o
/ \ / \
o 1 1 o
/ \ / \
2 2 2 2
so a(3) = 5.
- D. E. Knuth, Art of Computer Programming, Vol. 3, Sect. 6.2.3 (7) and (8).
Row maxima give: n*2^n =
A036289(n).
Number of AVL trees read by rows gives:
A143897.
The infimum of all external path lengths of all binary trees with k (leaf-) nodes is:
A003314(k) for k>0.
Number of AVL trees read by columns gives:
A217298.
-
maxNods = 100; Clear[T, A029837, A072649, A036289, A228155]; T[0, 1] = 0; A029837[1] = 0; A072649[1] = 1; A228155[1] = 0; For[k = 2, k <= maxNods, k++, A029837[k] = maxNods; A072649[k] = 0; A228155u = 0; For[kL = 1, kL <= Floor[k/2], kL++, For[hL = A029837[kL], hL <= A072649[kL] - 1, hL++, For[hR = Max[hL - 1, A029837[k - kL]], hR <= Min[hL + 1, A072649[k - kL] - 1], hR++, maxDepthSum = k + T[hL, kL] + T[hR, k - kL]; A228155u = Max[maxDepthSum, A228155u]; h = Max[hL, hR] + 1; If[ !IntegerQ[T[h, k]], T[h, k] = maxDepthSum, T[h, k] = Max[maxDepthSum, T[h, k]]]; A029837[k] = Min[h, A029837[k]]; If[ !IntegerQ[A036289[h]], A036289[h] = maxDepthSum, A036289[h] = Max[maxDepthSum, A036289[h]]]; A072649[k] = Max[h + 1, A072649[k]]; ]]]; A228155[k] = A228155u]; k =.; Table[A228155[k], {k, 1, maxNods}] (* Jean-François Alcover, Aug 19 2013, translated and adapted from Herbert Eberle's MuPAD program *)
-
maxNods:=100: // max number of leaves (= external nodes)
// Triangle T for all AVL trees with <= maxNods leaves:
delete T:
// table T indexed [h, k] (h=height, k=number of leaves):
T[0, 1]:=0:
// A029837 indexed [k], min height of tree with k leaves:
A029837:=array(1..maxNods): A029837[1]:=0:
// A072649 indexed [k], 1+max height of AVL tree with k leaves:
A072649:=array(1..maxNods): A072649[1]:=1:
// A036289 indexed [h], max depthsum of all height h AVL trees:
A036289:=array(1..maxNods):
// A228155 indexed [k], max depthsum of all AVL trees with k leaves:
A228155:=array(1..maxNods): A228155[1]:=0:
for k from 2 to maxNods do:
A029837[k]:=maxNods: // try infinity for the min height
A072649[k]:=0:
A228155u:=0:
// Put together 2 AVL trees:
for kL from 1 to floor(k/2) do:
// kL leaves in the left tree
for hL from A029837[kL] to A072649[kL]-1 do:
for hR from max(hL-1, A029837[k-kL])
to min(hL+1, A072649[k-kL]-1) do:
// k-kL leaves in the right subtree
maxDepthSum:=T[hL, kL]+T[hR, k-kL]+k:
A228155u:=max(maxDepthSum, A228155u):
h:=max(hL, hR)+1:
if type(T[h, k]) <> DOM_INT then // T[h, k] uninit
T[h, k]:=maxDepthSum:
else
T[h, k]:=max(maxDepthSum, T[h, k]):
end_if:
A029837[k]:=min(h, A029837[k]):
if type(A036289[h]) <> DOM_INT then
A036289[h]:=maxDepthSum:
else
A036289[h]:=max(maxDepthSum, A036289[h]):
end_if:
A072649[k]:=max(h+1, A072649[k]):
end_for: // hR
end_for: // hL
end_for: // kL
A228155[k]:=A228155u:
end_for: // k
A286756
Irregular triangle T(n,k) for 0 <= k < 5n/2: T(n,k) = number of vertices of the cube-connected cycle graph of order n that are at a distance k from a designated vertex.
Original entry on oeis.org
1, 1, 1, 2, 2, 2, 1, 1, 3, 4, 6, 6, 3, 1, 1, 3, 5, 8, 11, 13, 13, 8, 2, 0, 1, 3, 6, 10, 16, 24, 31, 32, 23, 11, 3, 0, 1, 3, 6, 11, 18, 29, 43, 58, 72, 71, 47, 19, 5, 1, 0, 1, 3, 6, 12, 20, 34, 55, 83, 120, 154, 162, 131, 77, 29, 7, 2, 0
Offset: 1
Triangle starts:
1, 1
1, 2, 2, 2, 1
1, 3, 4, 6, 6, 3, 1
1, 3, 5, 8, 11, 13, 13, 8, 2, 0
1, 3, 6, 10, 16, 24, 31, 32, 23, 11, 3, 0
1, 3, 6, 11, 18, 29, 43, 58, 72, 71, 47, 19, 5, 1, 0
1, 3, 6, 12, 20, 34, 55, 83, 120, 154, 162, 131, 77, 29, 7, 2, 0
...
The order 3 graph has 24 vertices. For k=1 to 6 there are 3, 4, 6, 6, 3, 1 vertices at a distance k from any vertex in the graph.
A340257
a(n) = 2^n * (1+n*(n+1)/2).
Original entry on oeis.org
1, 4, 16, 56, 176, 512, 1408, 3712, 9472, 23552, 57344, 137216, 323584, 753664, 1736704, 3964928, 8978432, 20185088, 45088768, 100139008, 221249536, 486539264, 1065353216, 2323644416, 5049942016, 10938744832, 23622320128, 50868518912, 109253230592, 234075717632
Offset: 0
-
a:= n-> 2^n*(1+n*(n+1)/2):
seq(a(n), n=0..30);
-
Table[2^n (1+(n(n+1))/2),{n,0,30}] (* or *) LinearRecurrence[{6,-12,8},{1,4,16},30] (* Harvey P. Dale, Jan 19 2023 *)
A373339
Number of permutations in symmetric group S_n with an even number of cycles of length 2 or more.
Original entry on oeis.org
1, 1, 1, 1, 4, 36, 296, 2360, 19776, 180544, 1812352, 19953792, 239490560, 3113487872, 43589096448, 653837077504, 10461394714624, 177843713556480, 3201186851815424, 60822550202187776, 1216451004083601408, 25545471085844758528, 562000363888782868480
Offset: 0
a(1)=a(2)=a(3)=1 due to S_1,S_2,S_3 containing 1 permutation with an even number of non-fixed point cycles: the identity permutation, with 0 non-fixed point cycles.
a(4)=4 due to S_4 containing 4 permutations with an even number of non-fixed point cycles: the 3 (2,2)-cycles (12)(34),(13)(24),(14)(23); and the identity permutation (1)(2)(3)(4).
A373340
Number of permutations of symmetric group S_n with an odd number of cycles of length 2 or more.
Original entry on oeis.org
0, 0, 1, 5, 20, 84, 424, 2680, 20544, 182336, 1816448, 19963008, 239511040, 3113532928, 43589194752, 653837290496, 10461395173376, 177843714539520, 3201186853912576, 60822550206644224, 1216451004093038592, 25545471085864681472, 562000363888824811520
Offset: 0
a(0)=0 due to the sole permutation in S_0 being the empty permutation, with 0 non-fixed point cycles, not an odd number.
a(1)=0 due to the sole permutation in S_1 being the fixed point (1), with 0 non-fixed point cycles, not an odd number.
a(2)=1 due to 1 permutation in S_2 with an odd number of non-fixed point cycles: (12), with 1 non-fixed point cycle.
a(3)=5 due to 5 permutations in S_3 with an odd number of non-fixed point cycles: (12)(3),(13)(2),(23)(1),(123),(132), all with 1 non-fixed point cycle.
Comments