cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-40 of 97 results. Next

A003156 A self-generating sequence (see Comments for definition).

Original entry on oeis.org

1, 4, 5, 6, 9, 12, 15, 16, 17, 20, 21, 22, 25, 26, 27, 30, 33, 36, 37, 38, 41, 44, 47, 48, 49, 52, 55, 58, 59, 60, 63, 64, 65, 68, 69, 70, 73, 76, 79, 80, 81, 84, 85, 86, 89, 90, 91, 94, 97, 100, 101, 102, 105, 106, 107, 110, 111, 112, 115, 118, 121, 122, 123, 126, 129, 132
Offset: 1

Views

Author

Keywords

Comments

From N. J. A. Sloane, Dec 26 2020: (Start)
The best definitions of the triple [this sequence, A003157, A003158] are as the rows a(n), b(n), c(n) of the table:
n: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, ...
a: 1, 4, 5, 6, 9, 12, 15, 16, 17, 20, 21, 22, ...
b: 3, 8, 11, 14, 19, 24, 29, 32, 35, 40, 43, 46, ...
c: 2, 7, 10, 13, 18, 23, 28, 31, 34, 39, 42, 45, ...
where a(1)=1, b(1)=3, c(1)=2, and thereafter
a(n) = mex{a(i), b(i), c(i), i
b(n) = a(n) + 2*n,
c(n) = b(n) - 1.
Then a,b,c form a partition of the positive integers.
Note that there is another triple of sequences (A003144, A003145, A003146) also called a, b, c and also a partition of the positive integers, in a different paper by the same authors (Carlitz-Scovelle-Hoggatt) in the same volume of the same journal.
(End)
a(n) is the number of ones before the n-th zero in the Feigenbaum sequence A035263. - Philippe Deléham, Mar 27 2004
Number of odd numbers before the n-th even number in A007413, A007913, A001511, A029883, A033485, A035263, A036585, A065882, A065883, A088172, A092412. - Philippe Deléham, Apr 03 2004
Indices of a in the sequence closed under a -> abc, b -> a, c -> a, starting with a(1) = a; see A092606 where a = 0, b = 2, c = 1. - Philippe Deléham, Apr 12 2004

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Programs

  • Haskell
    following Deléham
    a003156 n = a003156_list !! (n-1)
    a003156_list = scanl1 (+) a080426_list
    -- Reinhard Zumkeller, Oct 27 2014
    
  • Maple
    a:= proc(n) global l; while nops(l) [1, 3$d, 1][], l) od; `if` (n=1, 1, a(n-1) +l[n]) end: l:= [1]: seq (a(n), n=1..80); # Alois P. Heinz, Oct 31 2009
  • Mathematica
    Position[Nest[Flatten[# /. {0 -> {0, 2, 1}, 1 -> {0}, 2 -> {0}}]&, {0}, 7], 0] // Flatten (* Jean-François Alcover, Mar 14 2014 *)
  • Python
    def A003156(n):
        def bisection(f,kmin=0,kmax=1):
            while f(kmax) > kmax: kmax <<= 1
            kmin = kmax >> 1
            while kmax-kmin > 1:
                kmid = kmax+kmin>>1
                if f(kmid) <= kmid:
                    kmax = kmid
                else:
                    kmin = kmid
            return kmax
        def f(x):
            c, s = n+x, bin(x)[2:]
            l = len(s)
            for i in range(l&1,l,2):
                c -= int(s[i])+int('0'+s[:i],2)
            return c
        return bisection(f,n,n)-n # Chai Wah Wu, Jan 29 2025

Formula

a(n) = A079523(n) - n + 1 = A003157(n) - 2n = A003158(n) - 2n + 1. - Philippe Deléham, Feb 28 2004
a(n) = A036554(n) - n = A072939(n) - n - 1 = 2*A003159(n) - n. - Philippe Deléham, Apr 10 2004
a(n) = Sum_{k = 1..n} A080426(k). - Philippe Deléham, Apr 16 2004

Extensions

More terms from Alois P. Heinz, Oct 31 2009
Incorrect equation removed from formula by Peter Munn, Dec 11 2020

A003157 A self-generating sequence (see Comments in A003156 for the definition).

Original entry on oeis.org

3, 8, 11, 14, 19, 24, 29, 32, 35, 40, 43, 46, 51, 54, 57, 62, 67, 72, 75, 78, 83, 88, 93, 96, 99, 104, 109, 114, 117, 120, 125, 128, 131, 136, 139, 142, 147, 152, 157, 160
Offset: 1

Keywords

Comments

Indices of c in the sequence closed under a -> abc, b -> a, c -> a, starting with a(1) = a; see A092606 where a = 0, b = 2, c = 1. - Philippe Deléham, Apr 12 2004
These are the positions of 1 in A286044; complement of A286045; conjecture: a(n)/n -> 4. - Clark Kimberling, May 07 2017

Examples

			As a word, A286044 = 001000010010010000100..., in which 1 is in positions a(n) for n>=1.  - _Clark Kimberling_, May 07 2017
		

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Mathematica
    s = Nest[Flatten[# /. {0 -> {0, 1}, 1 -> {1, 0}}] &, {0}, 9] (* Thue-Morse, A010060 *)
    w = StringJoin[Map[ToString, s]]
    w1 = StringReplace[w, {"011" -> "0"}]
    st = ToCharacterCode[w1] - 48 (* A286044 *)
    Flatten[Position[st, 0]]  (* A286045 *)
    Flatten[Position[st, 1]]  (* A003157 *)
    (* Clark Kimberling, May 07 2017 *)
  • Python
    def A003157(n):
        def bisection(f,kmin=0,kmax=1):
            while f(kmax) > kmax: kmax <<= 1
            kmin = kmax >> 1
            while kmax-kmin > 1:
                kmid = kmax+kmin>>1
                if f(kmid) <= kmid:
                    kmax = kmid
                else:
                    kmin = kmid
            return kmax
        def f(x):
            c, s = n+x, bin(x)[2:]
            l = len(s)
            for i in range(l&1,l,2):
                c -= int(s[i])+int('0'+s[:i],2)
            return c
        return bisection(f,n,n)+n # Chai Wah Wu, Jan 29 2025

Formula

Numbers n such that A003159(n) is even. a(n) = A003158(n) + 1 = A036554(n) + n. - Philippe Deléham, Feb 22 2004

A232744 Numbers k for which the largest m such that m! divides k is odd.

Original entry on oeis.org

1, 3, 5, 6, 7, 9, 11, 12, 13, 15, 17, 18, 19, 21, 23, 25, 27, 29, 30, 31, 33, 35, 36, 37, 39, 41, 42, 43, 45, 47, 49, 51, 53, 54, 55, 57, 59, 60, 61, 63, 65, 66, 67, 69, 71, 73, 75, 77, 78, 79, 81, 83, 84, 85, 87, 89, 90, 91, 93, 95, 97, 99, 101, 102, 103, 105
Offset: 1

Author

Antti Karttunen, Dec 01 2013

Keywords

Comments

Numbers k for which A055881(k) is odd.
Equally: Numbers k which have an even number of the trailing zeros in their factorial base representation A007623(k).
The sequence can be described in the following manner: Sequence includes all multiples of 1!, except that it excludes from those the multiples of 2!, except that it includes the multiples of 3! (6), except that it excludes the multiples of 4! (24), except that it includes the multiples of 5! (120), except that it excludes the multiples of 6! (720), except that it includes the multiples of 7! (5040), except that it excludes the multiples of 8! (40320), except that it includes the multiples of 9! (362880), and so on, ad infinitum.
The number of terms not exceeding m! for m>=1 is A002467(m). The asymptotic density of this sequence is 1 - 1/e (A068996). - Amiram Eldar, Feb 26 2021

Crossrefs

Complement: A232745. Cf. also A055881, A007623, A232741-A232743.
Analogous sequences for binary system: A003159 & A036554.

Programs

  • Mathematica
    seq[max_] := Select[Range[max!], EvenQ @ LengthWhile[Reverse @ IntegerDigits[#, MixedRadix[Range[max, 2, -1]]], #1 == 0 &] &]; seq[5] (* Amiram Eldar, Feb 26 2021 *)

Formula

a(1)=1, and for n>1, a(n) = a(n-1) + (2 - A000035(A055881(a(n-1)+1))).

A334747 Let p be the smallest prime not dividing the squarefree part of n. Multiply n by p and divide by the product of all smaller primes.

Original entry on oeis.org

2, 3, 6, 8, 10, 5, 14, 12, 18, 15, 22, 24, 26, 21, 30, 32, 34, 27, 38, 40, 42, 33, 46, 20, 50, 39, 54, 56, 58, 7, 62, 48, 66, 51, 70, 72, 74, 57, 78, 60, 82, 35, 86, 88, 90, 69, 94, 96, 98, 75, 102, 104, 106, 45, 110, 84, 114, 87, 118, 120, 122, 93, 126, 128, 130, 55
Offset: 1

Author

Peter Munn, May 09 2020

Keywords

Comments

A bijection from the positive integers to the nonsquares, A000037.
A003159 (which has asymptotic density 2/3) lists index n such that a(n) = 2n. The sequence maps the terms of A003159 1:1 onto A036554, defining a bijection between them.
Similarly, bijections are defined from A007417 to A325424, from A325424 to A145204\{0}, and from the first in each of the following pairs to the nonsquare integers in the second: (A145204\{0}, A036668), (A036668, A007417), (A036554, A003159), (A332820, A332821), (A332821, A332822), (A332822, A332820). Note that many of these are between sets where membership depends on whether a number's squarefree part divides by 2 and/or 3.
Starting from 1, and iterating the sequence as a(1) = 2, a(2) = 3, a(3) = 6, a(6) = 5, a(5) = 10, etc., runs through the squarefree numbers in the order they appear in A019565. - Antti Karttunen, Jun 08 2020

Examples

			168 = 42*4 has squarefree part 42 (and square part 4). The smallest prime absent from 42 = 2*3*7 is 5 and the product of all smaller primes is 2*3 = 6. So a(168) = 168*5/6 = 140.
		

Crossrefs

Permutation of A000037.
Row 2, and therefore column 2, of A331590. Cf. A334748 (row 3).
A007913, A034386, A053669, A225546 are used in formulas defining the sequence.
The formula section details how the sequence maps the terms of A002110, A003961, A019565; and how f(a(n)) relates to f(n) for f = A008833, A048675, A267116; making use of A003986.
Subsequences: A016825 (odd bisection), A036554, A329575.
Bijections are defined that relate to A003159, A007417, A036668, A145204, A325424, A332820, A332821, A332822.
Cf. also binary trees A334860, A334866 and A334870 (a left inverse).

Programs

  • PARI
    a(n) = {my(c=core(n), m=n); forprime(p=2, , if(c % p, m*=p; break, m/=p)); m;} \\ Michel Marcus, May 22 2020

Formula

a(n) = n * m / A034386(m-1), where m = A053669(A007913(n)).
a(n) = A331590(2, n) = A225546(2 * A225546(n)).
a(A019565(n)) = A019565(n+1).
a(k * m^2) = a(k) * m^2.
a(A003961(n)) = 2 * A003961(n).
a(2 * A003961(n)) = A003961(a(n)).
a(A002110(n)) = prime(n+1).
A048675(a(n)) = A048675(n) + 1.
A008833(a(n)) = A008833(n).
A267116(a(n)) = A267116(n) OR 1, where OR denotes the bitwise operation A003986.
a(A003159(n)) = A036554(n) = 2 * A003159(n).
A334870(a(n)) = n. - Antti Karttunen, Jun 08 2020

A372591 Numbers whose binary weight (A000120) plus bigomega (A001222) is even.

Original entry on oeis.org

2, 6, 7, 8, 9, 10, 11, 13, 15, 19, 24, 28, 31, 32, 33, 34, 36, 37, 39, 40, 41, 42, 44, 46, 47, 50, 51, 52, 54, 57, 58, 59, 60, 61, 65, 67, 70, 73, 76, 77, 79, 85, 86, 90, 95, 96, 97, 98, 103, 106, 107, 109, 110, 111, 112, 117, 119, 123, 124, 126, 127, 128, 129
Offset: 1

Author

Gus Wiseman, May 14 2024

Keywords

Comments

The odd version is A372590.

Examples

			The terms (center), their binary indices (left), and their weakly decreasing prime indices (right) begin:
          {2}   2  (1)
        {2,3}   6  (2,1)
      {1,2,3}   7  (4)
          {4}   8  (1,1,1)
        {1,4}   9  (2,2)
        {2,4}  10  (3,1)
      {1,2,4}  11  (5)
      {1,3,4}  13  (6)
    {1,2,3,4}  15  (3,2)
      {1,2,5}  19  (8)
        {4,5}  24  (2,1,1,1)
      {3,4,5}  28  (4,1,1)
  {1,2,3,4,5}  31  (11)
          {6}  32  (1,1,1,1,1)
        {1,6}  33  (5,2)
        {2,6}  34  (7,1)
        {3,6}  36  (2,2,1,1)
      {1,3,6}  37  (12)
    {1,2,3,6}  39  (6,2)
        {4,6}  40  (3,1,1,1)
      {1,4,6}  41  (13)
      {2,4,6}  42  (4,2,1)
		

Crossrefs

For sum (A372428, zeros A372427) we have A372587, complement A372586.
For minimum (A372437) we have A372440, complement A372439.
Positions of even terms in A372441, zeros A071814.
For maximum (A372442, zeros A372436) we have A372589, complement A372588.
The complement is A372590.
For just binary indices:
- length: A001969, complement A000069
- sum: A158704, complement A158705
- minimum: A036554, complement A003159
- maximum: A053754, complement A053738
For just prime indices:
- length: A026424 A028260 (count A027187), complement (count A027193)
- sum: A300061 (count A058696), complement A300063 (count A058695)
- minimum: A340933 (count A026805), complement A340932 (count A026804)
- maximum: A244990 (count A027187), complement A244991 (count A027193)
A019565 gives Heinz number of binary indices, adjoint A048675.
A029837 gives greatest binary index, least A001511.
A031215 lists even-indexed primes, odd A031368.
A048793 lists binary indices, length A000120, reverse A272020, sum A029931.
A070939 gives length of binary expansion.
A112798 lists prime indices, length A001222, reverse A296150, sum A056239.

Programs

  • Mathematica
    Select[Range[100],EvenQ[DigitCount[#,2,1]+PrimeOmega[#]]&]

A161641 Positions n such that A010060(n) + A010060(n+4) = 1.

Original entry on oeis.org

0, 1, 2, 3, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 24, 25, 26, 27, 32, 33, 34, 35, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 88, 89, 90, 91, 96, 97, 98, 99, 104, 105, 106, 107, 108
Offset: 1

Author

Vladimir Shevelev, Jun 15 2009

Keywords

Comments

Also union of all numbers of the form A131323(n)-k, k=0, 1, 2, or 3.

Programs

  • Mathematica
    tm[0] = 0; tm[n_?EvenQ] := tm[n] = tm[n/2]; tm[n_] := tm[n] = 1 - tm[(n - 1)/2]; Reap[For[n = 0, n <= 16000, n++, If[tm[n] + tm[n + 4] == 1, Sow[n]]]][[2, 1]] (* G. C. Greubel, Jan 01 2018 *)
  • PARI
    is(n)=hammingweight(n)%2!=hammingweight(n+4)%2 \\ Charles R Greathouse IV, Aug 20 2013

Formula

Extensions

More terms from R. J. Mathar, Aug 17 2009

A161674 Positions n such that A010060(n) + A010060(n+2) = 1.

Original entry on oeis.org

0, 1, 4, 5, 6, 7, 8, 9, 12, 13, 16, 17, 20, 21, 22, 23, 24, 25, 28, 29, 30, 31, 32, 33, 36, 37, 38, 39, 40, 41, 44, 45, 48, 49, 52, 53, 54, 55, 56, 57, 60, 61, 64, 65, 68, 69, 70, 71, 72, 73, 76, 77, 80, 81, 84, 85, 86, 87, 88, 89, 92, 93, 94, 95, 96, 97, 100, 101, 102, 103, 104
Offset: 1

Author

Vladimir Shevelev, Jun 16 2009

Keywords

Comments

Locates patterns of the form 0x1 or 1x0 in the Thue-Morse sequence.
Complement to A081706. Also: union of sequences {2*A121539(n)+k}, k=0 or 1, generalized in A161673.
Also union of sequences {A079523(n)-k}, k=0 or 1. For a generalization see A161890. - Vladimir Shevelev, Jul 05 2009
The asymptotic density of this sequence is 2/3 (Rowland and Yassawi, 2015; Burns, 2016). - Amiram Eldar, Jan 30 2021

Programs

Extensions

Extended by R. J. Mathar, Aug 28 2009

A372588 Numbers k > 1 such that (greatest binary index of k) + (greatest prime index of k) is odd.

Original entry on oeis.org

2, 6, 7, 8, 10, 11, 15, 18, 19, 21, 24, 26, 27, 28, 29, 32, 33, 34, 40, 41, 44, 45, 46, 47, 50, 51, 55, 59, 60, 62, 65, 70, 71, 72, 74, 76, 78, 79, 81, 84, 86, 87, 89, 91, 95, 96, 98, 101, 104, 105, 106, 107, 108, 111, 112, 113, 114, 116, 117, 122, 126, 128
Offset: 1

Author

Gus Wiseman, May 14 2024

Keywords

Comments

A binary index of n is any position of a 1 in its reversed binary expansion. The binary indices of n are row n of A048793.
A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
The even version is A372589.

Examples

			The terms (center), their binary indices (left), and their weakly decreasing prime indices (right) begin:
        {2}   2  (1)
      {2,3}   6  (2,1)
    {1,2,3}   7  (4)
        {4}   8  (1,1,1)
      {2,4}  10  (3,1)
    {1,2,4}  11  (5)
  {1,2,3,4}  15  (3,2)
      {2,5}  18  (2,2,1)
    {1,2,5}  19  (8)
    {1,3,5}  21  (4,2)
      {4,5}  24  (2,1,1,1)
    {2,4,5}  26  (6,1)
  {1,2,4,5}  27  (2,2,2)
    {3,4,5}  28  (4,1,1)
  {1,3,4,5}  29  (10)
        {6}  32  (1,1,1,1,1)
      {1,6}  33  (5,2)
      {2,6}  34  (7,1)
      {4,6}  40  (3,1,1,1)
    {1,4,6}  41  (13)
    {3,4,6}  44  (5,1,1)
  {1,3,4,6}  45  (3,2,2)
		

Crossrefs

For sum (A372428, zeros A372427) we have A372586.
For minimum (A372437) we have A372439, complement A372440.
For length (A372441, zeros A071814) we have A372590, complement A372591.
Positions of odd terms in A372442, zeros A372436.
The complement is A372589.
For just binary indices:
- length: A000069, complement A001969
- sum: A158705, complement A158704
- minimum: A003159, complement A036554
- maximum: A053738, complement A053754
For just prime indices:
- length: A026424 (count A027193), complement A028260 (count A027187)
- sum: A300063 (count A058695), complement A300061 (count A058696)
- minimum: A340932 (count A026804), complement A340933 (count A026805)
- maximum: A244991 (count A027193), complement A244990 (count A027187)
A005408 lists odd numbers.
A019565 gives Heinz number of binary indices, adjoint A048675.
A029837 gives greatest binary index, least A001511.
A031368 lists odd-indexed primes, even A031215.
A048793 lists binary indices, length A000120, reverse A272020, sum A029931.
A061395 gives greatest prime index, least A055396.
A070939 gives length of binary expansion.
A112798 lists prime indices, length A001222, reverse A296150, sum A056239.

Programs

  • Mathematica
    Select[Range[2,100],OddQ[IntegerLength[#,2]+PrimePi[FactorInteger[#][[-1,1]]]]&]

Formula

Numbers k such that A070939(k) + A061395(k) is odd.

A072939 Define a sequence c depending on n as follows: c(1)=1 and c(2)=n; c(k+2) = (c(k+1) + c(k))/2 if c(k+1) and c(k) have the same parity; otherwise c(k+2) = abs(c(k+1) - 2*c(k)); sequence gives values of n such that lim_{k->oo} c(k) = infinity.

Original entry on oeis.org

3, 7, 9, 11, 15, 19, 23, 25, 27, 31, 33, 35, 39, 41, 43, 47, 51, 55, 57, 59, 63, 67, 71, 73, 75, 79, 83, 87, 89, 91, 95, 97, 99, 103, 105, 107, 111, 115, 119, 121, 123, 127, 129, 131, 135, 137, 139, 143, 147, 151, 153, 155, 159, 161, 163, 167, 169, 171, 175, 179
Offset: 1

Author

Benoit Cloitre, Aug 12 2002

Keywords

Comments

If c(2) is even then c(k) = 1 for k >= 2*c(2), hence there is no even value in the sequence. If n is in the sequence, there exist an integer k(n) and an integer m(n) such that, for any k >= k(n), c(2k) - c(2k-1) = 2*m(n) and c(2k+1) - c(2k) = -m(n). Sometimes m(n) = (n-1)/2 but not always. If B(n) = a(n+1) - a(n) then B(n) = 2 or 4, but B(n) does not seem to follow any pattern.
Conjecture: a(n) = A036554(n)+1. - Vladeta Jovovic, Apr 01 2003
a(n) = A036554(n)+1 = A079523(n)+2. - Ralf Stephan, Jun 09 2003
Conjecture: this sequence gives the positions of 0's in the limiting 0-word of the morphism 0->11, 1->10, A285384. - Clark Kimberling, Apr 26 2017
Conjecture: This also gives the positions of the 1's in A328979. - N. J. A. Sloane, Nov 05 2019

Examples

			41 is in the sequence: if c(2)=41, then it follows that c(3)=21, c(4)=31, c(5)=26, c(6)=36, c(7)=31, c(8)=41, c(9)=36, ...; for k >= 2, c(2k) - c(2k-1) = 10 and c(2k+1) - c(2k) = -5, which implies that c(k) -> infinity.
		

Crossrefs

Programs

  • Python
    from itertools import count, islice
    def A072939_gen(startvalue=2): return filter(lambda n:(~(n-1)&(n-2)).bit_length()&1,count(max(startvalue,2))) # generator of terms >= startvalue
    A072939_list = list(islice(A072939_gen(),30)) # Chai Wah Wu, Jul 05 2022
    
  • Python
    def A072939(n):
        def bisection(f,kmin=0,kmax=1):
            while f(kmax) > kmax: kmax <<= 1
            kmin = kmax >> 1
            while kmax-kmin > 1:
                kmid = kmax+kmin>>1
                if f(kmid) <= kmid:
                    kmax = kmid
                else:
                    kmin = kmid
            return kmax
        def f(x):
            c, s = n+x, bin(x)[2:]
            l = len(s)
            for i in range(l&1,l,2):
                c -= int(s[i])+int('0'+s[:i],2)
            return c
        return bisection(f,n,n)+1 # Chai Wah Wu, Jan 29 2025

Formula

Conjecture: lim_{n->oo} a(n)/n = 3.

A101544 Smallest permutation of the natural numbers with a(3*k-2) + a(3*k-1) = a(3*k), k > 0.

Original entry on oeis.org

1, 2, 3, 4, 5, 9, 6, 7, 13, 8, 10, 18, 11, 12, 23, 14, 15, 29, 16, 17, 33, 19, 20, 39, 21, 22, 43, 24, 25, 49, 26, 27, 53, 28, 30, 58, 31, 32, 63, 34, 35, 69, 36, 37, 73, 38, 40, 78, 41, 42, 83, 44, 45, 89, 46, 47, 93, 48, 50, 98, 51, 52, 103, 54, 55, 109, 56, 57, 113, 59, 60
Offset: 1

Author

Reinhard Zumkeller, Dec 06 2004

Keywords

Comments

Inverse: A101545; A101546(n) = a(a(n)).
From Bernard Schott, Jun 30 2019: (Start)
The terms can also be written simply following this array with 3 columns:
1st column 2nd column 3rd column
1 + 2 = 3
4 + 5 = 9
6 + 7 = 13
8 + 10 = 18
11 + 12 = 23
14 + 15 = 29
16 + 17 = 33
... ... ...
Question: in which column ends up the repdigit R_m(d) with m times the digit d?
Answer: R_m(d) will be in:
1) column 1 if d = 1, 4, 6, 8, or if d = 9 and m is even;
2) column 2 if d = 2, 5, 7;
3) column 3 if d = 3, or if d = 9 and m is odd.
Problem coming from Krusemeyer et al. (End)

Crossrefs

Programs

  • Maple
    N:= 100: # to get a(1) .. a(N)
    S:= {$1..N}:
    for n from 1 to N do
      if n mod 3 = 0 then A[n] := A[n-1]+A[n-2]
      else A[n]:= min(S)
      fi;
      S:= S minus {A[n]};
    od:
    seq(A[i],i=1..N); # Robert Israel, Feb 07 2016
  • Mathematica
    Fold[Append[#1, If[Divisible[#2, 3], #1[[-1]] + #1[[-2]], Min@Complement[Range[Max@#1 + 1], #1]]] &, {1}, Range[2, 71]] (* Ivan Neretin, Feb 05 2016 *)
  • PARI
    A101544_upto(N, U=[], T=0)=vector(N, n, if(n%=3, while(if(U, U[1])==T+=1, U=U[^1]); n>1 || N=T; T, U=concat(U, N+=T); N))
    apply( {A101544(n, k=(n-=1)\12, m=n\3%4, c=n%3)=(10*k+3*m-(m>1))<<(c>1)+c+(m<3 || c==1 || valuation(k+1,2)%2)}, [1..99]) \\ M. F. Hasler, Nov 26 2024

Formula

From Rémy Sigrist, Apr 05 2020: (Start)
- a(3*n-2) = A249031(2*n-1),
- a(3*n-1) = A249031(2*n),
- a(3*n) = A075326(n).
(End)
a(3*(4k + m) + c) = (10k + 3m - [m>1])*2^[c=3] + c - [m = 3 and c <> 2 and k+1 is in A036554], where 1 <= c <= 3, 0 <= m <= 3, and [.] is the Iverson bracket. - M. F. Hasler, Nov 26 2024
Previous Showing 31-40 of 97 results. Next