Original entry on oeis.org
1, 5, 22, 105, 511, 2534, 12720, 64449, 328900, 1688115, 8705060, 45064110, 234054198, 1219053680, 6364813192, 33302104593, 174570695175, 916628799380, 4820160541350, 25381091113455, 133808636072595, 706211862466500, 3730964595817680, 19729042153581150
Offset: 1
L.g.f.: L(x) = x + 5*x^2/2 + 22*x^3/3 + 105*x^4/4 + 511*x^5/5 +...
such that
L(x) = x*(1+x) + d/dx x^3*(1+x)^2/2! + d^2/dx^2 x^5*(1+x)^3/3! + d^3/dx^3 x^7*(1+x)^4/4! +...
The g.f. of A001002 begins:
exp(L(x)) = 1 + x + 3*x^2 + 10*x^3 + 38*x^4 + 154*x^5 + 654*x^6 +...
-
a213684 n = a155161 (2*n) n -- Reinhard Zumkeller, Apr 17 2013
-
with(orthopoly): seq(add(i, i in [seq((-1)^iquo(n-k,2)*coeff(G(n,n,x/2), x, k), k=0..n)]), n=1..24); # Peter Luschny, Jan 26 2018
-
Table[n*Sum[Binomial[k+n-1,n]*Binomial[k,n-k]/k,{k,1,n}],{n,1,20}] (* Vaclav Kotesovec, Oct 20 2012 *)
-
{a(n)=n*sum(r=1,n,binomial(r+n-1,n)*binomial(r,n-r)/r)}
for(n=1, 30, print1(a(n), ", "))
-
{Dx(n, F)=local(D=F); for(i=1, n, D=deriv(D)); D}
{a(n)=local(A=1); A=(sum(m=1, n+1, Dx(m-1, x^(2*m-1)*(1+x)^m/m!)+x*O(x^n))); n*polcoeff(A, n)}
for(n=1, 30, print1(a(n), ", "))
A122075
Coefficients of a generalized Pell-Lucas polynomial read by rows.
Original entry on oeis.org
1, 2, 1, 3, 3, 1, 5, 7, 4, 1, 8, 15, 12, 5, 1, 13, 30, 31, 18, 6, 1, 21, 58, 73, 54, 25, 7, 1, 34, 109, 162, 145, 85, 33, 8, 1, 55, 201, 344, 361, 255, 125, 42, 9, 1, 89, 365, 707, 850, 701, 413, 175, 52, 10, 1, 144, 655, 1416, 1918, 1806, 1239, 630, 236, 63, 11, 1
Offset: 0
Triangle begins:
1
2 1
3 3 1
5 7 4 1
8 15 12 5 1
13 30 31 18 6 1
A055830 = (1, 1, -1, 0, 0, 0, ...) DELTA (0, 1, 0, 0, 0, 0, ...) begins:
1
1, 0
2, 1, 0
3, 3, 1, 0
5, 7, 4, 1, 0
8, 15, 12, 5, 1, 0
13, 30, 31, 18, 6, 1, 0
- G. C. Greubel, Table of n, a(n) for the first 50 rows, flattened
- Tian-Xiao He and Peter J.-S. Shiue, Identities for linear recursive sequences of order 2, Elect. Res. Archive (2021) Vol. 29, No. 5, 3489-3507.
- Tian-Xiao He, Peter J.-S. Shiue, Zihan Nie, and Minghao Chen, Recursive sequences and Girard-Waring identities with applications in sequence transformation, Electronic Research Archive (2020) Vol. 28, No. 2, 1049-1062.
- Y. Sun, Numerical Triangles and Several Classical Sequences, Fib. Quart. 43, no. 4, (2005) 359-370.
-
u[1, x_] := 1; v[1, x_] := 1; z = 16;
u[n_, x_] := u[n - 1, x] + (x + 1)*v[n - 1, x];
v[n_, x_] := u[n - 1, x] + x*v[n - 1, x];
Table[Expand[u[n, x]], {n, 1, z/2}]
Table[Expand[v[n, x]], {n, 1, z/2}]
cu = Table[CoefficientList[u[n, x], x], {n, 1, z}];
TableForm[cu]
Flatten[%] (* A122075 *)
Table[Expand[v[n, x]], {n, 1, z}]
cv = Table[CoefficientList[v[n, x], x], {n, 1, z}];
TableForm[cv]
Flatten[%] (* A037027 *)
(* Clark Kimberling, Mar 05 2012 *)
CoefficientList[CoefficientList[Series[-(1 + x)/(-1 + x*y + x + x^2), {x, 0, 10}, {y, 0, 10}], x], y] // Flatten (* G. C. Greubel, Dec 24 2017 *)
-
T(n,k)={ sum(j=0,n-k+1, binomial(n-k-j+1,j)*binomial(n-j,k)) ; } { nmax=10 ; for(n=0,nmax, for(k=0,n, print1(T(n,k),",") ; ); ); }
A057280
Coefficient triangle of polynomials (rising powers) related to Fibonacci convolutions. Companion triangle to A057995.
Original entry on oeis.org
2, 17, 5, 225, 120, 15, 4080, 3050, 700, 50, 94440, 89225, 28625, 3775, 175, 2666880, 3006000, 1208975, 223175, 19225, 625, 89016480, 115299900, 54824650, 12689800, 1537100, 93500, 2250, 3430929600, 4973077800, 2695596850, 737744125
Offset: 0
k=2: F2(n)=((16+5*n)*(n+1)*F0(n+1)+(17+5*n)*(n+2)*F0(n))/50, cf. A001628.
A057995
Coefficient triangle of polynomials (rising powers) related to Fibonacci convolutions. Companion triangle to A057280.
Original entry on oeis.org
1, 16, 5, 300, 160, 20, 6840, 4850, 1075, 75, 186120, 159650, 48175, 6100, 275, 5916240, 5846700, 2168650, 379700, 31550, 1000, 215717040, 238437900, 103057800, 22426825, 2605175, 153875, 3625, 8888140800, 10772348400
Offset: 0
k=2: F2(n)=((16+5*n)*(n+1)*F0(n+1)+(17+5*n)*(n+2)*F0(n))/50, cf. A001628.
A178819
Pascal's prism (3-dimensional array) read by folded antidiagonal cross-sections: (h+i; h, i-j, j), h >= 0, i >= 0, 0 <= j <= i.
Original entry on oeis.org
1, 1, 1, 1, 1, 2, 2, 1, 2, 1, 1, 3, 3, 1, 3, 6, 3, 3, 3, 1, 1, 4, 4, 6, 12, 6, 4, 12, 12, 4, 1, 4, 6, 4, 1, 1, 5, 10, 10, 5, 1, 5, 20, 30, 20, 5, 10, 30, 30, 10, 10, 20, 10, 5, 5, 1, 1, 6, 6, 15, 30, 15, 20, 60, 60, 20, 15, 60, 90, 60, 15, 6, 30, 60, 60, 30, 6, 1, 6, 15, 20, 15, 6, 1
Offset: 0
Prism begins (levels 1-4):
1
1 1
1 2 1
1 3 3 1
1
2 2
3 6 3
4 12 12 4
1
3 3
6 12 6
10 30 30 10
1
4 4
10 20 10
20 60 60 20
Sums of shallow diagonals for each level correspond to rows of square
A037027.
-
end = 5; Column/@Table[Multinomial[h, i-j, j], {h, 0, end}, {i, 0, end}, {j, 0, i}]
A214178
Triangle T(n,k) by rows: the k-th derivative of the Fibonacci Polynomial F_n(x) evaluated at x=1.
Original entry on oeis.org
0, 1, 0, 1, 1, 0, 2, 2, 2, 0, 3, 5, 6, 6, 0, 5, 10, 18, 24, 24, 0, 8, 20, 44, 84, 120, 120, 0, 13, 38, 102, 240, 480, 720, 720, 0, 21, 71, 222, 630, 1560, 3240, 5040, 5040, 0, 34, 130, 466, 1536, 4560, 11760, 25200, 40320, 40320, 0, 55, 235, 948, 3564, 12264
Offset: 0
The triangle begins:
. 0: [0]
. 1: [1, 0]
. 2: [1, 1, 0]
. 3: [2, 2, 2, 0]
. 4: [3, 5, 6, 6, 0]
. 5: [5, 10, 18, 24, 24, 0]
. 6: [8, 20, 44, 84, 120, 120, 0]
. 7: [13, 38, 102, 240, 480, 720, 720, 0]
. 8: [21, 71, 222, 630, 1560, 3240, 5040, 5040, 0]
. 9: [34, 130, 466, 1536, 4560, 11760, 25200, 40320, 40320, 0]
. 10: [55, 235, 948, 3564, 12264, 37800, 100800, 221760, 362880, 362880, 0]
...
-
a214178 n k = a214178_tabl !! n !! k
a214178_row n = a214178_tabl !! n
a214178_tabl = [0] : map f a037027_tabl where
f row = (zipWith (*) a000142_list row) ++ [0]
-
T[n_, k_] := D[Fibonacci[n, x], {x, k}] /. x -> 1;
Table[T[n, k], {n, 0, 10}, {k, 0, n}] // Flatten (* Jean-François Alcover, Sep 20 2021 *)
A057282
Coefficient triangle of polynomials (falling powers) related to Fibonacci convolutions. Companion triangle to A057281.
Original entry on oeis.org
2, 5, 17, 15, 120, 225, 50, 700, 3050, 4080, 175, 3775, 28625, 89225, 94440, 625, 19225, 223175, 1208975, 3006000, 2666880, 2250, 93500, 1537100, 12689800, 54824650, 115299900, 89016480, 8125, 438250, 9670750, 112454500, 737744125
Offset: 1
k=2: F2(n)=((5*n^2+21*n+16)*F(n+2)+(5*n^2+27*n+34)*F(n+1))/50, F(n) := A000045(n); see A001628.
2; 5,17; 15,120,225; 50,700,3050,4080; 175,3775,28625,89225,94440; ...
A092565
Triangle of coefficients T(n,k) (n>=0, 0<=k<=2*n), read by rows, where the n-th row polynomial equals the numerator of the n-th convergent of the continued fraction [1+x+x^2;1+x+x^2,1+x+x^2,...] for n>0, with the zeroth row defined as T(0,0)=1.
Original entry on oeis.org
1, 1, 1, 1, 2, 2, 3, 2, 1, 3, 5, 8, 7, 6, 3, 1, 5, 10, 19, 22, 22, 16, 10, 4, 1, 8, 20, 42, 58, 69, 63, 49, 30, 15, 5, 1, 13, 38, 89, 142, 191, 206, 191, 146, 95, 50, 21, 6, 1, 21, 71, 182, 327, 491, 602, 637, 573, 447, 296, 167, 77, 28, 7, 1, 34, 130, 363, 722, 1191, 1626
Offset: 0
Ratio of row polynomials R(3)/R(2) = (3+5*x+8*x^2+7*x^3+6*x^4+3*x^5+x^6)/(2+2*x+3*x^2+2*x^3+x^4) = [1+x+x^2;1+x+x^2,1+x+x^2].
Rows begin:
1;
1, 1, 1;
2, 2, 3, 2, 1;
3, 5, 8, 7, 6, 3, 1;
5, 10, 19, 22, 22, 16, 10, 4, 1;
8, 20, 42, 58, 69, 63, 49, 30, 15, 5, 1;
13, 38, 89, 142, 191, 206, 191, 146, 95, 50, 21, 6, 1;
21, 71, 182, 327, 491, 602, 637, 573, 447, 296, 167, 77, 28, 7, 1;
34, 130, 363, 722, 1191, 1626, 1921, 1958, 1752, 1366, 931, 546, 273, 112, 36, 8, 1;
...
-
T:= proc(x, y) option remember; `if`(y<0 or y>2*x, 0, `if`(x=0, 1,
add(T(x-l[1], y-l[2]), l=[[1, 0], [2, 0], [1, 1], [1, 2]])))
end:
seq(seq(T(n,k), k=0..2*n), n=0..10); # Alois P. Heinz, Apr 16 2013
-
A037027[n_, k_] := Sum[Binomial[k+j, k]*Binomial[j, n-j-k], {j, 0, n-k}]; A037027[n_, 0] = Fibonacci[n + 1]; row[n_] := CoefficientList[ Sum[A037027[n, k] x^k (1+x)^k, {k, 0, n}], x]; Flatten[Table[row[n], {n, 0, 8}]][[1 ;; 70]] (* Jean-François Alcover, Jul 18 2011 *)
-
T(n,k)=if(2*n
-
/* same as in A092566, but last line (output) replaced by the following */
/* show as triangle (0<=k<=2*n): */
{for (n=1,N, for (k=1,2*n-1, print1(M[n,k],", "); ); print(); );}
/* Joerg Arndt, Jul 01 2011 */
A152440
Riordan matrix (1/(1-x-x^2),x/(1-x-x^2)^2).
Original entry on oeis.org
1, 1, 1, 2, 3, 1, 3, 9, 5, 1, 5, 22, 20, 7, 1, 8, 51, 65, 35, 9, 1, 13, 111, 190, 140, 54, 11, 1, 21, 233, 511, 490, 255, 77, 13, 1, 34, 474, 1295, 1554, 1035, 418, 104, 15, 1, 55, 942, 3130, 4578, 3762, 1925, 637, 135, 17, 1, 89, 1836, 7285, 12720, 12573, 7865, 3276
Offset: 0
Triangle begins:
1;
1, 1;
2, 3, 1;
3, 9, 5, 1;
5, 22, 20, 7, 1;
8, 51, 65, 35, 9, 1;
13, 111, 190, 140, 54, 11, 1;
21, 233, 511, 490, 255, 77, 13, 1, etc.
- _Philippe Deléham_, Feb 20 2014
A184018
Expansion of c(x/(1-x-x^2)) / (1-x-x^2), c(x) the g.f. of A000108.
Original entry on oeis.org
1, 2, 6, 19, 67, 254, 1017, 4236, 18168, 79680, 355635, 1609912, 7373401, 34102976, 159055728, 747211753, 3532452169, 16792693562, 80224098381, 384948157635, 1854469572120, 8965866981294, 43488834409737, 211569299607282
Offset: 0
-
A000108 := proc(n) binomial(2*n,n)/(n+1) ; end proc:
A037027 := proc(n,m) add( binomial(m+k,m)*binomial(k,n-k-m),k=0..n-m) ; end proc:
A184018 := proc(n) add( A037027(n,k)*A000108(k),k=0..n) ; end proc:
seq(A184018(n),n=0..10) ; # R. J. Mathar, Jan 11 2011
-
CoefficientList[Series[(1 - x - x^2 - Sqrt[1 - 6 x + 3 x^2 + 6 x^3 + x^4])/(2 x (1 - x - x^2)), {x, 0, 20}], x] (* Vaclav Kotesovec, Feb 04 2014 *)
-
{a(n)=polcoeff((1-sqrt(1-4*x/(1-x-x^2 +O(x^(n+2)))))/(2*x),n)} /* Paul D. Hanna, Sep 06 2011 */
Comments