cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-40 of 78 results. Next

A071141 Numbers n such that sum of distinct primes dividing n is divisible by the largest prime dividing n. Also n is neither a prime, nor a true power of prime and n is squarefree. Squarefree solutions of A071140.

Original entry on oeis.org

30, 70, 286, 646, 1798, 3135, 3526, 3570, 6279, 7198, 8855, 8970, 10366, 10626, 10695, 11571, 15015, 16095, 16530, 17255, 17391, 20615, 20706, 20735, 20806, 23326, 24738, 24882, 26691, 28083, 31031, 36519, 36890, 38086, 38130, 41151, 41615, 44330, 44998
Offset: 1

Views

Author

Labos Elemer, May 13 2002

Keywords

Examples

			n = 286 = 2*11*13 has a form of 2pq, where p and q are twin primes;
n = 5414430 = 2*3*5*7*19*23*59, sum = 2+3+5+7+19+23+59 = 118 = 2*59.
		

Crossrefs

Programs

  • Mathematica
    ffi[x_] := Flatten[FactorInteger[x]] lf[x_] := Length[FactorInteger[x]] ba[x_] := Table[Part[ffi[x], 2*w-1], {w, 1, lf[x]}] sb[x_] := Apply[Plus, ba[x]] ma[x_] := Part[Reverse[Flatten[FactorInteger[x]]], 2] amo[x_] := Abs[MoebiusMu[x]] Do[s=sb[n]/ma[n]; If[IntegerQ[s]&&Greater[lf[n], 1]&& !Equal[amo[n], 1], Print[{n, ba[n]}]], {n, 2, 1000000}]
    (* Second program: *)
    Select[Range@ 45000, Function[n, And[Length@ # > 1, SquareFreeQ@ n, Divisible[Total@ #, Last@ #]] &[FactorInteger[n][[All, 1]] ]]] (* Michael De Vlieger, Jul 18 2017 *)

Formula

A008472(n)/A006530(n) is an integer, n has at least 3 distinct prime factors and n is squarefree.

A097491 Primes which are two greater than the terms of A079164.

Original entry on oeis.org

5, 17, 21800053277, 72409291238312731227527, 86984485062381462583582279727, 21679097826151232817152558557032490897727272048343000297777, 107025222275017133994159705286756083545279583250537082122450588876727
Offset: 1

Views

Author

Cino Hilliard, Aug 24 2004

Keywords

Comments

A097491(8) = 2948...794027 has 76 digits and A097491(9) = 152400...802327 has 288 digits. - Hartmut F. W. Hoft, Apr 27 2021

Examples

			a(3) = 21800053277 = A079164(17) + 2 = 3*5*5*7*11*13*17*19*29*31 + 2. - _Hartmut F. W. Hoft_, Apr 27 2021
		

Crossrefs

Programs

  • Mathematica
    step[{list_, q_}] := Module[{p=NextPrime[q]}, {Join[list, If[PrimeQ[p+2], {{p,p+2}}, {}]], p}]
    pairList[n_] := First[NestWhile[step, {{{3, 5}}, 3}, Length[First[step[#]]]<=n&]]
    a079164[n_] := Rest[FoldList[Times, 1, Take[Flatten[pairList[n]], n]]]
    a097491[n_] := Select[Map[#+2&, a079164[n]], PrimeQ]
    a097491[39] (* Hartmut F. W. Hoft, Apr 27 2021 *)
  • PARI
    ft(n) = p=1;for(x=1,n,p*=twinl(x);if(isprime(p+2),print1(p+2", ")); p*=twinu(x);if(isprime(p+2),print1(p+2", ")))
    twinl(n) = { local(c,x); c=0; x=1; while(c
    				

Extensions

Edited by Don Reble, Apr 16 2007
Name corrected by Hartmut F. W. Hoft, Apr 27 2021

A120875 Product of twin primes minus 1.

Original entry on oeis.org

14, 34, 142, 322, 898, 1762, 3598, 5182, 10402, 11662, 19042, 22498, 32398, 36862, 39202, 51982, 57598, 72898, 79522, 97342, 121102, 176398, 186622, 213442, 272482, 324898, 359998, 381922, 412162, 435598, 656098, 675682, 685582, 736162
Offset: 1

Views

Author

Lekraj Beedassy, Jul 09 2006

Keywords

Comments

This sequence is a subsequence of A023515.

Crossrefs

Programs

  • Mathematica
    Times[#, # + 2] - 1 & /@ Select[Prime@ Range@ 150, PrimeQ[# + 2] &] (* Michael De Vlieger, Oct 23 2015 *)
  • PARI
    for(n=1, 200, if(prime(n+1)-prime(n)==2, print1(prime(n)*prime(n+1)-1", "))) \\ Altug Alkan, Oct 23 2015

Formula

a(n) = A037074(n)-1 = (A014574(n))^2 -2 = A075369(n)-2.
a(n) = 2*A120876(n). - Jason Kimberley, Oct 23 2015
a(n) = 36*A002822(n-1)^2-2, for n>1. - Jason Kimberley, Oct 23 2015
a(n) = A023515(A107770(n)). - Jason Kimberley, Oct 23 2015

A143202 Numbers having exactly two distinct prime factors p, q with q = p+2.

Original entry on oeis.org

15, 35, 45, 75, 135, 143, 175, 225, 245, 323, 375, 405, 675, 875, 899, 1125, 1215, 1225, 1573, 1715, 1763, 1859, 1875, 2025, 3375, 3599, 3645, 4375, 5183, 5491, 5625, 6075, 6125, 6137, 8575, 9375, 10125, 10403, 10935, 11663, 12005, 16875, 17303, 18225
Offset: 1

Views

Author

Reinhard Zumkeller, Aug 12 2008

Keywords

Comments

Subsequence of A007774.
A037074 is a subsequence.

Examples

			a(1) = 15 = 3 * 5 = A001359(1) * A006512(1).
a(2) = 35 = 5 * 7 = A001359(2) * A006512(2).
a(3) = 45 = 3^2 * 5 = A001359(1)^2 * A006512(1).
a(4) = 75 = 3 * 5^2 = A001359(1) * A006512(1)^2.
a(5) = 135 = 3^3 * 5 = A001359(1)^3 * A006512(1).
a(6) = 143 = 11 * 13 = A001359(3) * A006512(3).
a(7) = 175 = 5^2 * 7 = A001359(2)^2 * A006512(2).
a(8) = 225 = 3^2 * 5^2 = A001359(1)^2 * A006512(1)^2.
a(9) = 245 = 5 * 7^2 = A001359(2) * A006512(2)^2.
a(10) = 323 = 17 * 19 = A001359(4) * A006512(4).
a(11) = 375 = 3 * 5^3 = A001359(1) * A006512(1)^3.
a(12) = 405 = 3^4 * 5 = A001359(1)^4 * A006512(1).
		

Crossrefs

Programs

  • Haskell
    a143202 n = a143202_list !! (n-1)
    a143202_list = filter (\x -> a006530 x - a020639 x == 2) [1,3..]
    -- Reinhard Zumkeller, Sep 13 2011
  • Mathematica
    tdpfQ[n_]:=Module[{fi=FactorInteger[n][[;;,1]]},Length[fi]==2&&fi[[2]]-fi[[1]]==2]; Select[Range[20000],tdpfQ] (* Harvey P. Dale, Mar 04 2023 *)

Formula

A143201(a(n)) = 3.
A020639(a(n)) in A001359 and A006530(a(n)) in A006512.
A001221(a(n)) = 2.
Sum_{n>=1} 1/a(n) = Sum_{n>=1} 1/(A001359(n)^2-1) = 0.1812568234997... . - Amiram Eldar, Oct 26 2024

A163836 Composites whose largest prime factor is equal to the sum of all the other prime factors (with repetition).

Original entry on oeis.org

4, 9, 25, 30, 49, 70, 84, 121, 169, 286, 289, 308, 361, 440, 495, 528, 529, 594, 646, 728, 819, 841, 884, 961, 975, 1040, 1170, 1248, 1369, 1404, 1496, 1681, 1683, 1748, 1798, 1849, 1976, 2209, 2223, 2499, 2809, 2975, 3128, 3135, 3344, 3481, 3519, 3526, 3570
Offset: 1

Views

Author

Juri-Stepan Gerasimov, Aug 05 2009

Keywords

Comments

Sequence contains the square of every prime. - Sean A. Irvine, Oct 05 2009
Contains 4*A143206. - David A. Corneth, Apr 28 2020
Contains 2*A037074. - Bernard Schott, Apr 28 2020

Examples

			a(1) = 4 (2=2), a(2) = 9 (3=3), a(3) = 25 (5=5), a(4) = 30 (5=3+2), a(5) = 49 (7=7), a(6) = 70 (7=5+2), a(7) = 84 (7=3+2+2), a(8) = 121 (11=11), a(9) = 169 (13=13), a(10) = 286 (13=11+2), a(11) = 289(17=17), a(12) = 308 (11=7+2+2), ...
		

Crossrefs

Programs

  • Maple
    A002808 := proc(n) option remember; local a; if n = 1 then 4; else for a from procname(n-1)+1 do if not isprime(a) then return a; end if; end do: end if; end proc: A006530 := proc(n) if n = 1 then 1; else numtheory[factorset](n) ; max(op(%)) ; end if; end: A001414 := proc(n) ifactors(n)[2] ; add( op(1,p)*op(2,p),p=%) ; end: A163836 := proc(n) option remember; local a,lpf; if n =1 then 4; else for a from procname(n-1)+1 do if not isprime(a) then lpf := A006530(a) ; if 2*lpf = A001414(a) then return a; end if; end if; od: end if; end: seq(A163836(n),n=1..80) ; # R. J. Mathar, Oct 10 2009
  • Mathematica
    seqQ[n_] := Module[{f = FactorInteger[n]}, If[Length[f] == 1, f[[1, 2]] == 2, f[[-1, 2]] == 1 && f[[-1, 1]] == Plus @@ Times @@@ Most[f]]]; Select[Range[4000], seqQ] (* Amiram Eldar, Apr 28 2020 *)
  • Python
    from sympy import factorint
    def ok(n):
      f = factorint(n)
      return sum(f[p] for p in f) > 1 and 2*max(f) == sum(p*f[p] for p in f)
    print(list(filter(ok, range(3571)))) # Michael S. Branicky, Apr 09 2021

Extensions

Corrected and extended by Sean A. Irvine and R. J. Mathar, Oct 05 2009

A063530 Numbers k such that phi(k)+1 is a square.

Original entry on oeis.org

15, 16, 20, 24, 30, 35, 39, 45, 52, 56, 65, 70, 72, 78, 84, 90, 104, 105, 112, 123, 130, 140, 143, 144, 155, 156, 164, 165, 168, 175, 176, 180, 183, 200, 203, 210, 215, 220, 225, 231, 244, 245, 246, 248, 261, 264, 286, 300, 308, 310, 323, 330, 339, 344, 350
Offset: 1

Views

Author

Labos Elemer, Aug 02 2001

Keywords

Comments

Numbers k such that A000010(k) = -1 + m^2 for some m.

Examples

			If k = p*(p+2), a product of twin primes (from A037074), then k is in the sequence. The corresponding square is p^2. Other solutions are k = {56,72,78,84}, since phi(k) + 1 = 25 for all. Also phi(123) + 1 = 9^2, the square of a composite.
		

Crossrefs

Programs

  • Mathematica
    Select[Range[400],IntegerQ[Sqrt[1+EulerPhi[#]]]&] (* Harvey P. Dale, Jul 31 2020 *)
  • PARI
    { n=0; for (a=1, 10^9, if (issquare(eulerphi(a) + 1), write("b063530.txt", n++, " ", a); if (n==1000, break)) ) } \\ Harry J. Smith, Aug 25 2009

A070222 Numbers k such that the sum of prime divisors of k divides the sum of divisors of k.

Original entry on oeis.org

15, 20, 24, 35, 42, 54, 66, 72, 95, 98, 100, 104, 108, 110, 114, 119, 120, 126, 132, 135, 140, 143, 160, 168, 189, 195, 207, 209, 216, 220, 224, 258, 264, 270, 276, 287, 290, 294, 319, 322, 323, 351, 360, 363, 375, 377, 378, 384, 392, 432, 440, 456, 459, 464
Offset: 1

Views

Author

Benoit Cloitre, May 07 2002

Keywords

Examples

			The sum of divisors of 132 is sigma(132) = 336; prime divisors of 132 are 2,3,11 and (336)/(2+3+11) = 336/16 = 21 hence 132 is in the sequence.
		

Crossrefs

A037074 is a subsequence. - Amiram Eldar, Aug 08 2020

Programs

  • Mathematica
    Select[Range[2,464], IntegerQ[DivisorSigma[1,#]/Total[First/@FactorInteger[#]]] &] (* Jayanta Basu, May 16 2013 *)
  • PARI
    for(n=2,700,if(sigma(n)%sumdiv(n,d,isprime(d)*d)==0,print1(n,",")))

A072027 Swap (2,3) and all twin prime pairs >(3,5) in prime factorization of n.

Original entry on oeis.org

1, 3, 2, 9, 7, 6, 5, 27, 4, 21, 13, 18, 11, 15, 14, 81, 19, 12, 17, 63, 10, 39, 23, 54, 49, 33, 8, 45, 31, 42, 29, 243, 26, 57, 35, 36, 37, 51, 22, 189, 43, 30, 41, 117, 28, 69, 47, 162, 25, 147, 38, 99, 53, 24, 91, 135, 34, 93, 61, 126, 59, 87, 20, 729, 77
Offset: 1

Views

Author

Reinhard Zumkeller, Jun 07 2002

Keywords

Examples

			a(143) = a(11*13) = a(11)*a(13) = 13*11 = 143.
a(77) = a(7*11) = a(7)*a(11) = 5*13 = 65.
		

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := If[p < 5, 5 - p, If[PrimeQ[p + 2], p + 2, If[PrimeQ[p - 2], p - 2, p]]]^e; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Feb 26 2024 *)
  • PARI
    a(n) = {my(f = factor(n)); prod(i = 1, #f~, p = f[i,1]; if(p < 5, 5-p, if(isprime(p+2), p+2, if(isprime(p-2), p-2, p)))^f[i,2]);} \\ Amiram Eldar, Feb 26 2024

Formula

Multiplicative with a(p) = (if p<=3 then 5-p else (if p+2 is prime then p+2 else (if p-2 is prime then p-2 else p))), p prime.
a(a(n)) = n, self-inverse permutation of natural numbers.
a(n) = n for single primes (A007510) and products of twin prime pairs (A037074).
Sum_{k=1..n} a(k) ~ c * n^2 / 2, where c = Product_{(p < q) swapped pair} ((p^2-p)*(q^2-q)/((p^2-q)*(q^2-p))) = 1.832194438922717... . - Amiram Eldar, Feb 26 2024

A063532 Numbers k such that phi(k) + 1 = x^2 and sigma(k) + 1 = y^2 for some x and y.

Original entry on oeis.org

15, 35, 56, 72, 78, 84, 123, 143, 165, 323, 543, 627, 678, 728, 814, 836, 899, 1350, 1484, 1535, 1683, 1763, 1846, 2296, 2967, 3288, 3444, 3599, 3784, 4103, 4620, 5084, 5183, 5964, 6580, 6693, 6820, 7150, 7626, 7806, 9096
Offset: 1

Views

Author

Labos Elemer, Aug 02 2001

Keywords

Examples

			If k = p(p+2) is a product of twin primes then phi(k) + 1 = p^2, sigma(k) + 1 = (p+2)^2, so k is in the sequence, A037074 a proper subset. There are many solutions not of this form, such as 72, 123, and 165.
		

Crossrefs

Programs

  • PARI
    { n=0; for (a=1, 10^9, if (issquare(eulerphi(a) + 1) && issquare(sigma(a) + 1), write("b063532.txt", n++, " ", a); if (n==500, break)) ) } \\ Harry J. Smith, Aug 25 2009

A063533 Hypotenuses of special Pythagorean triples constructed from twin primes as follows: {u, w}={p,p+2}; side a=2p(p+2), side b=(p+2)^2-p^2 and the terms of sequence are values of c=a(n)=p^2+(p+2)^2=phi(a/2)+1+sigma(a/2)+1.

Original entry on oeis.org

34, 74, 290, 650, 1802, 3530, 7202, 10370, 20810, 23330, 38090, 45002, 64802, 73730, 78410, 103970, 115202, 145802, 159050, 194690, 242210, 352802, 373250, 426890, 544970, 649802, 720002, 763850, 824330, 871202, 1312202, 1351370
Offset: 1

Views

Author

Labos Elemer, Aug 02 2001

Keywords

Comments

Sum of the numbers on the corners of the square array that lists the numbers from 1..A014574(n)^2 in increasing order by rows. - Wesley Ivan Hurt, May 27 2023

Examples

			a(6) is obtained as follows: u = p = 41, w = p+2 = 43; a = 2*41*43 = 2*1763 = 3526; b = 43*2-41^2 = 1849-1681 = 168; c = 43^2+41^2 = 1849+1681 = 3530 = 1+phi(1763)+1+sigma(1763) = 1680+1848+2 = a(6); and 3526^2+168^2 = 3530^2.
		

Crossrefs

Formula

a(n) = 2 + A000203(A037074(n)) + A000010(A037074(n)) = A001359(n)^2 + A006512(n)^2.
a(n) = 2*(A014574(n)^2 + 1). - Wesley Ivan Hurt, May 27 2023
Previous Showing 31-40 of 78 results. Next