cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 41-50 of 78 results. Next

A072965 In prime factorization of n replace all matching twin prime pairs with 1, where (3,5)-matches are replaced before (5,7).

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 1, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 2, 31, 32, 33, 34, 1, 36, 37, 38, 39, 40, 41, 42, 43, 44, 3, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 4, 61, 62, 63, 64, 65, 66, 67, 68, 69, 2, 71, 72, 73, 74
Offset: 1

Views

Author

Reinhard Zumkeller, Aug 20 2002

Keywords

Comments

a(a(n)) = a(n); a(A037074(n)) = 1.
a(n) = 1 iff n = A074480(k) for some k.
a(n) mod A037074(k) > 0 for all k. - Reinhard Zumkeller, Jan 29 2008

Examples

			a(30)=a(2*3*5)=2*1=2; a(105)=a(3*5*7)=1*7=7; a(143)=a(11*13)=1; a(225)=a(3*3*5*5)=a((3*5)*(3*5))=1*1=1; a(525)=a(3*5*5*7)=a((3*5)*(5*7))=1*1=1.
		

Crossrefs

Programs

  • Haskell
    a072965 n = f 1 (a027746_row n) where
       f y []      = y
       f y [p]     = p * y
       f y (2:ps)  = f (2 * y) ps
       f y (3:5:_) = a072965 (n `div` 15)
       f y (p:qs@(q:ps)) | q == p + 2 = f y ps
                         | otherwise  = f (p * y) qs
    -- Reinhard Zumkeller, Oct 31 2012
  • Mathematica
    a[n_] := Times @@ (Flatten[ (Table[#[[1]], {#[[2]]}] & ) /@ FactorInteger[n]] //. {p1___, p2_, p3_, p4___} /; p3 == p2 + 2 -> {p1, p4}); Table[a[n], {n, 1, 74}](* Jean-François Alcover, Nov 04 2011 *)
  • PARI
    a(n)=my(f=factor(n),t);for(i=2,#f[,1],if(f[i-1,1]+2==f[i,1],t=min(f[i-1,2],f[i,2]);f[i-1,2]-=t;f[i,2]-=t));factorback(f) \\ Charles R Greathouse IV, Nov 04 2011
    

A073831 Maximum of A073830(k) for k between A001359(n) and A001359(n+1).

Original entry on oeis.org

8, 56, 182, 552, 1406, 2862, 4556, 9506, 10712, 17292, 19460, 30102, 32942, 37442, 49952, 54522, 69432, 77006, 94556, 113906, 167690, 177662, 209306, 259590, 317532, 352242, 376382, 398792, 427062, 636006, 658532, 678152
Offset: 1

Views

Author

Reinhard Zumkeller, Aug 12 2002

Keywords

Comments

a(n) = A073830(A073832(n)); a(n) < A037074(n+2).

Programs

  • Maple
    A073831 := proc(n)
        A073830(A073832(n)) ;
    end proc:
    seq(A073831(n),n=1..50) ; # R. J. Mathar, Feb 21 2017
  • Mathematica
    f[n_] := Mod[4*((n - 1)! + 1) + n, n*(n + 2)];
    pp = Select[Prime[Range[200]], PrimeQ[# + 2] & ];
    a[n_] := Max[f /@ Range[pp[[n]], pp[[n + 1]]]];
    Array[a, Length[pp] - 1] (* Jean-François Alcover, Feb 22 2018 *)

A171727 The number of twin prime pairs in the interval (p^2,p*q), where (p,q) runs over the twin prime pairs (A001359(n),A006512(n)).

Original entry on oeis.org

1, 1, 1, 1, 2, 2, 4, 1, 3, 2, 2, 4, 7, 3, 3, 5, 7, 4, 4, 7, 6, 11, 9, 5, 11, 9, 9, 11, 10, 11, 9, 11, 11, 12, 11, 12, 18, 12, 12, 16, 11, 16, 20, 14, 16, 15, 20, 16, 22, 13, 22, 16, 17, 21, 20, 20, 23, 22, 23, 20, 21, 21, 26, 20, 28, 24, 24, 23, 24, 25, 21, 24, 37, 27, 21, 28, 24, 31
Offset: 1

Views

Author

Jaspal Singh Cheema, Dec 16 2009

Keywords

Comments

If you graph the order of the twin primes along the x-axis (i.e., first twin, second, third, ...) and the number of twins in the sequence given above along the y-axis, a clear pattern emerges. As you go farther along the x-axis, the number of twin primes, on average, within the interval increases. The pattern appears to be nonlinear. If one could prove that there's at least one twin prime within each interval, the twin prime conjecture would be proved since the n-th twin produces larger intervals with more twin primes. The evidence seems overwhelming.

Examples

			The first twin prime pair (3,5) corresponds to the interval (9,15), which contains one twin prime pair (11,13), so a(1) = 1.
The fifth twin prime pair (29,31) corresponds to the interval (841,899), which contains the twin prime pairs (857,859) and (881,883), so a(5) = 2.
		

References

  • C. C. Clawson, Mathematical Mysteries: The Beauty and Magic of Numbers, Perseus Books, 1999.
  • J. Derbyshire, Prime Obsession: Bernhard Riemann and the Greatest Unsolved Problem in Mathematics, Penguin Books Canada Ltd., 2004.
  • M. du Sautoy, The Music of the Primes: Searching to Solve the Greatest Mystery in Mathematics, HarperCollins Publishers Inc., 2004.

Crossrefs

Programs

  • PARI
    {for(k=1, 300, if(prime(k+1)-prime(k)==2, my(c=0); forprime(m=prime(k)^2, prime(k)*prime(k+1), c+=isprime(m+2)); print1(c, ", ")))} \\ Zhandos Mambetaliyev, Mar 28 2021

Extensions

Partially edited by Michel Marcus, Mar 19 2013
Edited by Charlie Neder, Feb 12 2019

A386991 Numbers k such that k^2 + sopfr(k)^2 is a square, where sopfr = A001414.

Original entry on oeis.org

1, 8, 15, 35, 112, 143, 323, 899, 1763, 3599, 5183, 10403, 11663, 19043, 22499, 32399, 36863, 39203, 51983, 57599, 72899, 79523, 97343, 121103, 176399, 186623, 213443, 272483, 324899, 359999, 381923, 412163, 435599, 656099, 675683, 685583, 736163
Offset: 1

Views

Author

Robert Israel, Aug 12 2025

Keywords

Comments

Includes A037074 because if k = p*(p+2) where p and p+2 are primes, k^2 + sopfr(k)^2 = p^2*(p+2)^2 + (2*p+2)^2 = (p^2 + 2*p + 2)^2.
Are 1, 8 and 112 the only terms not in A037074?

Examples

			a(3) = 15 is a term because the sum of prime factors of 15 is 3+5 = 8 and 15^2 + 8^2 = 289 = 17^2.
		

Crossrefs

Cf. A001414, A386246. Includes A037074.

Programs

  • Maple
    sopfr:= proc(n) local t; add(t[1]*t[2],t=ifactors(n)[2]) end proc:
    filter:= t -> issqr(t^2 + sopfr(t)^2):
    select(filter, [$1..10^5]);
  • Mathematica
    Sopfr[1]=0;Sopfr[n_]:= Plus @@ Times @@@ FactorInteger@ n;Select[Range[500000],IntegerQ[Sqrt[#^2+Sopfr[#]^2]]&] (* James C. McMahon, Aug 14 2025 *)

A063531 Numbers k such that sigma(k) + 1 is a square.

Original entry on oeis.org

2, 7, 8, 14, 15, 23, 32, 33, 35, 47, 54, 56, 57, 60, 72, 78, 79, 84, 87, 92, 95, 120, 123, 124, 128, 138, 143, 154, 165, 167, 174, 184, 190, 196, 213, 223, 235, 242, 252, 253, 258, 267, 295, 312, 315, 319, 323, 327, 348, 359, 375, 378, 380, 393, 412, 423, 439
Offset: 1

Views

Author

Labos Elemer, Aug 02 2001

Keywords

Comments

Numbers k such that A000203(k) = -1 + m^2 for some m.

Examples

			If k = p(p+2) is a product of twin primes (from A037074), then sigma(k) + 1 = 1 + (p+1)(p+3) = (p+2)^2, square of the larger twin. Other solutions can be either special primes = m^2 - 2 or composites like 120: sigma(120) = 120 + 60 + ... + 1 = 360 = 19^2 - 1. Square number solution is, e.g., 196: sigma(196) = 399 = 20^2 - 1.
		

Crossrefs

Programs

  • Mathematica
    Select[Range[500],IntegerQ[Sqrt[DivisorSigma[1,#]+1]]&] (* Harvey P. Dale, Jul 02 2021 *)
  • PARI
    { n=0; for (a=1, 10^9, if (issquare(sigma(a) + 1), write("b063531.txt", n++, " ", a); if (n==1000, break)) ) } \\ Harry J. Smith, Aug 25 2009

Extensions

Minor edits from Franklin T. Adams-Watters, Aug 29 2009

A071146 Numbers n such that sum of distinct primes dividing n is divisible by the largest prime dividing n. Also n has exactly 7 distinct prime factors and n is squarefree.

Original entry on oeis.org

1231230, 2062830, 2181270, 3327870, 3594990, 4224990, 4320030, 4671030, 5162430, 5411406, 5414430, 6767670, 7052430, 7432230, 7870830, 7947030, 8150142, 8273265, 8287230, 8569470, 8804334, 9378390, 10630830, 10705695, 10757838, 10776990, 10900230
Offset: 1

Views

Author

Labos Elemer, May 13 2002

Keywords

Examples

			n = pqrstu, p<q<r<s<t<u, primes, p+q+r+s+t+u = ku; n = 9378390 = 2*3*5*7*17*37*71; sum = 2+3+5+7+17+37+71 = 142 = 2*71
		

Crossrefs

Programs

  • Mathematica
    ffi[x_] := Flatten[FactorInteger[x]] lf[x_] := Length[FactorInteger[x]] ba[x_] := Table[Part[ffi[x], 2*w-1], {w, 1, lf[x]}] sb[x_] := Apply[Plus, ba[x]] ma[x_] := Part[Reverse[Flatten[FactorInteger[x]]], 2] amo[x_] := Abs[MoebiusMu[x]] Do[s=sb[n]/ma[n]; If[IntegerQ[s]&&Equal[lf[n], 7]&& !Equal[amo[n], 0], Print[{n, ba[n]}]], {n, 2, 1000000}]

Formula

A008472(n)/A006530(n) is an integer; A001221(n) = 7, n is squarefree.

A126249 p*(p+1)*(p+2)/6 where (p,p+2) are twin primes.

Original entry on oeis.org

10, 35, 286, 969, 4495, 12341, 35990, 62196, 176851, 209934, 437989, 562475, 971970, 1179616, 1293699, 1975354, 2303960, 3280455, 3737581, 5061836, 7023974, 12347930, 13436856, 16435111, 23706021, 30865405, 35999900, 39338069
Offset: 1

Views

Author

Lekraj Beedassy, Dec 21 2006

Keywords

Crossrefs

Cf. A126248.

Programs

  • Maple
    ZL:=[]:for p from 1 to 617 do if (isprime(p) and isprime(p+2) ) then ZL:=[op(ZL),(binomial((p+2),p-1))]; fi; od; print(ZL); # Zerinvary Lajos, Mar 08 2007
  • Mathematica
    Times@@# Mean[#]/6&/@Select[Partition[Prime[Range[250]],2,1],#[[2]]- #[[1]] == 2&] (* Harvey P. Dale, Sep 20 2014 *)

Formula

a(n) = A001359(n)*A014574(n)*A006512(n)/6;
a(n) = A037074(n)*A014574(n)/6;
a(n) = A007531(A006512(n))/6.
a(n) = A037074(n)*A002822(n-1), for n > 1.
a(n) = A126248(n)/6.

A138637 Products of prime quadruples.

Original entry on oeis.org

5005, 46189, 121330189, 1445140189, 463236778189, 4862973196189, 12359548828189, 18898278256189, 112254342850189, 144149198626189, 1022657400370189, 7924420639216189, 28604961973900189, 59910402098980189
Offset: 1

Views

Author

Jonathan Vos Post, May 14 2008

Keywords

Comments

Product of numbers n, n+2, n+6 and n+8 when are all prime. Quadruplet analog of A037074. Subset of A014613.

Crossrefs

Programs

  • Maple
    isA007530 := proc(n) local q; if isprime(n) and n>=5 then q := nextprime(n) ; if q-n = 2 then q := nextprime(q) ; if q -n = 6 then q := nextprime(q) ; RETURN( q-n = 8 ) ; else RETURN(false) ; fi ; else RETURN(false) ; ; fi ; else RETURN(false) ; ; fi ; end: A007530 := proc(n) option remember ; local a; if n = 1 then 5 ; else a := nextprime(A007530(n-1)) ; while not isA007530(a) do a := nextprime(a) ; od: RETURN(a) ; fi ; end: A138637 := proc(n) local p ; p := A007530(n) ; p*(p+2)*(p+6)*(p+8) ; end: seq(A138637(n),n=1..20) ; # R. J. Mathar, May 18 2008
  • Mathematica
    a = {}; For[n = 1, n < 5000, n++, If[{Prime[n+1]-Prime[n], Prime[n+2]-Prime[n+1], Prime[n+3]-Prime[n+2]} == {2, 4, 2}, AppendTo[a, Prime[n]*Prime[n+1]*Prime[n+2]* Prime[n+3]]]]; a (* Stefan Steinerberger, May 18 2008 *)
    Times@@@Select[Partition[Prime[Range[2500]],4,1],Differences[#]=={2,4,2}&] (* Harvey P. Dale, Sep 10 2018 *)

Formula

a(n) = A007530(n)*A007530(n+2)*A007530(n+6)*A007530(n+8).

Extensions

More terms from Stefan Steinerberger and R. J. Mathar, May 18 2008

A143957 An integer >= 2 is included if {the difference between the largest and smallest primes dividing n} divides n+1.

Original entry on oeis.org

6, 12, 14, 15, 18, 20, 24, 35, 36, 39, 44, 45, 48, 50, 54, 63, 72, 75, 80, 84, 96, 108, 119, 135, 143, 144, 147, 152, 153, 155, 162, 175, 192, 200, 208, 216, 224, 225, 230, 231, 242, 245, 275, 279, 288, 294, 299, 315, 320, 323, 324, 374, 375, 384, 399, 405, 429
Offset: 1

Views

Author

Leroy Quet, Sep 05 2008

Keywords

Examples

			The largest prime dividing 14 is 7. The smallest prime dividing 14 is 2. 7-2=5 divides 14+1=15. So 14 is in the sequence.
		

Crossrefs

Cf. A143958. Includes A037074.

Programs

  • Maple
    filter:= proc(n) local P;
      P:= numtheory:-factorset(n);
      if nops(P) = 1 then return false fi;
      n+1 mod (max(P)-min(P)) = 0
    end proc:
    select(filter, [$2..1000]); # Robert Israel, Nov 04 2020
  • Mathematica
    Select[Range[2, 429], If[Or[PrimeQ[#], PrimePowerQ[#]], False, Mod[#1, Last[#2] - First[#2]] == 0 & @@ {# + 1, FactorInteger[#][[All, 1]]}] &] (* Michael De Vlieger, Nov 04 2020 *)

Extensions

Extended by Ray Chandler, Nov 07 2008

A153196 Numbers n such that 6*n+5 and 6*n+7 are twin primes.

Original entry on oeis.org

0, 1, 2, 4, 6, 9, 11, 16, 17, 22, 24, 29, 31, 32, 37, 39, 44, 46, 51, 57, 69, 71, 76, 86, 94, 99, 102, 106, 109, 134, 136, 137, 142, 146, 169, 171, 174, 176, 181, 191, 204, 212, 214, 216, 219, 237, 241, 246, 247, 267, 269, 277, 282, 286, 297, 311, 312, 321, 324, 332
Offset: 1

Views

Author

Vincenzo Librandi, Dec 20 2008

Keywords

Comments

Appears to be the partial sums of A160273 which are the successive differences (divided by 3) of the average of twin prime pairs divided by 2 (A040040). - Stephen Crowley, May 24 2009

Examples

			For n = 0, 6*n+5 = 5 and 6*n+7 = 7 are twin primes;
for n = 99, 6*n+5 = 599 and 6*n+7 = 601 are twin primes.
		

Crossrefs

Cf. A001359 (lesser of twin primes), A002822 (6n-1, 6n+1 are twin primes).
Cf. A037074. - Vincenzo Librandi, Dec 26 2008

Programs

  • Magma
    [ n: n in [0..335] | IsPrime(6*n+5) and IsPrime(6*n+7) ];
  • Maple
    ZL := []; for p to 1000000 do if `and`(isprime(p), isprime(p+2)) then ZL := [op(ZL), ((p+2)^2-p^2)*(1/8)] end if end do; A160273 := [seq((ZL[i+1]-ZL[i])*(1/3), i = 2 .. nops(ZL)-1)]: ListTools[PartialSums]( A160273 ); # Stephen Crowley, May 24 2009
  • Mathematica
    Select[Range[0, 350], PrimeQ[6 # + 5]&&PrimeQ[6 # + 7]&] (* Vincenzo Librandi, Apr 04 2013 *)

Formula

a(j) = (A001359(j+1)-5)/6.
a(j) = A002822(j)-1.

Extensions

Edited and extended by Klaus Brockhaus, Dec 26 2008
Previous Showing 41-50 of 78 results. Next