cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 51-60 of 78 results. Next

A191746 Partial sums of product of twin primes.

Original entry on oeis.org

15, 50, 193, 516, 1415, 3178, 6777, 11960, 22363, 34026, 53069, 75568, 107967, 144830, 184033, 236016, 293615, 366514, 446037, 543380, 664483, 840882, 1027505, 1240948, 1513431, 1838330, 2198329, 2580252, 2992415, 3428014, 4084113, 4759796, 5445379, 6181542
Offset: 1

Views

Author

Harvey P. Dale, Jun 14 2011

Keywords

Crossrefs

Cf. A037074.

Programs

  • Mathematica
    Accumulate[Times@@@Select[Partition[Prime[Range[500]],2,1], Last[#]- First[#] ==2&]]

A284203 Number of twin prime (A001097) divisors of n.

Original entry on oeis.org

0, 0, 1, 0, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 2, 0, 1, 1, 1, 1, 2, 1, 0, 1, 1, 1, 1, 1, 1, 2, 1, 0, 2, 1, 2, 1, 0, 1, 2, 1, 1, 2, 1, 1, 2, 0, 0, 1, 1, 1, 2, 1, 0, 1, 2, 1, 2, 1, 1, 2, 1, 1, 2, 0, 2, 2, 0, 1, 1, 2, 1, 1, 1, 0, 2, 1, 2, 2, 0, 1, 1, 1, 0, 2, 2, 1, 2, 1, 0, 2, 2, 0, 2, 0, 2, 1, 0, 1, 2, 1, 1, 2, 1, 1, 3, 0, 1, 1, 1, 2
Offset: 1

Views

Author

Ilya Gutkovskiy, Mar 22 2017

Keywords

Examples

			--------------------------------------------
| n | divisors of n | twin prime    | a(n) |
|   |               | divisors of n |      |
|------------------------------------------
| 1 | {1}           |      {-}      |  0   |
| 2 | {1, 2}        |      {-}      |  0   |
| 3 | {1, 3}        |      {3}      |  1   |
| 4 | {1, 2, 4}     |      {-}      |  0   |
| 5 | {1, 5}        |      {5}      |  1   |
| 6 | {1, 2, 3, 6}  |      {3}      |  1   |
| 7 | {1, 7}        |      {7}      |  1   |
| 8 | {1, 2, 4, 8}  |      {-}      |  0   |
| 9 | {1, 3, 9}     |      {3}      |  1   |
--------------------------------------------
		

Crossrefs

Cf. A048599 (positions of records).

Programs

  • Mathematica
    nmax = 110; Rest[CoefficientList[Series[Sum[Boole[PrimeQ[k] && (PrimeQ[k - 2] || PrimeQ[k + 2])] x^k/(1 - x^k), {k, 1, nmax}], {x, 0, nmax}], x]]
    Table[Length[Select[Divisors[n], PrimeQ[#] && (PrimeQ[# - 2] || PrimeQ[# + 2]) &]], {n, 110}]
  • PARI
    concat([0, 0],Vec(sum(k=1, 110, (isprime(k) && (isprime(k - 2) || isprime(k + 2)))* x^k/(1 - x^k)) + O(x^111))) \\ Indranil Ghosh, Mar 22 2017
    
  • PARI
    a(n) = sumdiv(n, d, isprime(d) && (isprime(d-2) || isprime(d+2))); \\ Amiram Eldar, Jun 03 2024
    
  • Python
    from sympy import isprime, divisors
    print([len([i for i in divisors(n) if isprime(i) and (isprime(i - 2) or isprime(i + 2))]) for n in range(1, 111)]) # Indranil Ghosh, Mar 22 2017

Formula

G.f.: Sum_{k>=1} x^A001097(k)/(1 - x^A001097(k)).
a(A062729(n)) = 0. - Ilya Gutkovskiy, Apr 02 2017
From Amiram Eldar, Jun 03 2024: (Start)
a(A048599(n)) = n.
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = A065421 - 1/5 = 1.7021605... . (End)
Additive with a(p^e) = 1 if p is in A001097, and 0 otherwise. - Amiram Eldar, May 15 2025
a(A037074(n)) = 2. - Michel Marcus, May 15 2025

A329229 Numbers that are the product of two odd prime powers with Euler phi-functions having solely a single 2 as a common prime factor.

Original entry on oeis.org

15, 21, 33, 35, 39, 45, 51, 55, 57, 69, 75, 77, 87, 93, 95, 99, 111, 115, 119, 123, 129, 135, 141, 143, 147, 153, 155, 159, 161, 175, 177, 183, 187, 201, 203, 207, 209, 213, 215, 219, 225, 235, 237, 245, 249, 253, 261, 267, 287, 291, 295, 297, 299, 303, 309, 319
Offset: 1

Views

Author

Gerold Brändli, Nov 08 2019

Keywords

Comments

Numbers p^j*q^k, denoted "cyclic semiprimes", such that gcd(phi(p^j), phi(q^k)) = 2, p and q odd primes, j and k positive integers (Brändli and Beyne, 2016, def.4 and Lee et al., 2013, theo.1).
The products of twin primes (A037074), and odd composite numbers with a single pes-sequence, i.e. parameter B = 1, are a subset of this sequence (Schick 2003, eq.1.6.2).
Any element x in Zs* is said to be a "semi-primitive root", if the order of x modulo s is phi(s)/2, where phi(s) is the Euler phi-function (Lee 2013, def.1).
If s is a cyclic semiprime, x is a generating element and k an integer, then the following reduced modulus denoted mod* returns all elements of Zs* in the interval ]0,s/2[, with mod* defined by x^k mod* s = min(+-x^k mod s) (Lee et al., 2018, def.2.3).
Trivially, the number of cyclic semiprimes of the form 3*p is infinite.

References

  • Carl Schick, Trigonometrie und unterhaltsame Zahlentheorie, Selbstverlag, Zürich, 2003, ISBN 3-9522917-0-6. See p. 15.

Crossrefs

Cf. A037074.

Programs

  • Maple
    with(NumberTheory, Totient, PrimitiveRoot, Divisors, tau, phi, lambda); K := {}; for i from 3 by 2 to 100 do for j from i+2 by 2 to 100 do if numelems(ifactors(i*j)[2]) = 2 and gcd(phi(i), phi(j)) = 2 and gcd(i, j) = 1 then K := K union {i*j} end if end do end do; print(K)
  • Mathematica
    Select[Range[5, 320, 2], (f = FactorInteger[#]; Length[f] == 2 && GCD[ EulerPhi[ f[[1, 1]]^f[[1, 2]]], EulerPhi[f[[2, 1]]^f[[2, 2]]]] == 2) &] (* Giovanni Resta, Dec 01 2019 *)

Extensions

More terms from Giovanni Resta, Dec 01 2019

A343778 Primes which are two greater than A074040 terms.

Original entry on oeis.org

17, 21800053277, 86984485062381462583582279727, 2948338207972508983453357158259221375675126583677039825367935271466652794027
Offset: 1

Views

Author

Hartmut F. W. Hoft, Apr 29 2021

Keywords

Comments

a(5) = 3052230...330677 has 17332 digits, the only prime larger than a(4) and among the cumulative products of the first 2000 twin primes pairs plus two.

Examples

			a(1) = 17 = A074040(1) + 2 = 3*5 + 2.
		

Crossrefs

Programs

  • Mathematica
    (* function a074040[ ] is defined in A074040 *)
    a343778[n_] := Select[Map[#+2&, a074040[n]], PrimeQ]
    a343778[30]

A344147 Primes in A191746.

Original entry on oeis.org

193, 53069, 58422233, 1348470667, 2847740783, 3237916229, 5029745827, 7643871979, 15107731019, 17902513283, 21052092827, 22187962591, 28412311451, 59363922119, 81459096899, 85780812149, 102742076659, 123894775231, 137692362377, 143889901511, 170038274723, 174648621811
Offset: 1

Views

Author

Hartmut F. W. Hoft, May 10 2021

Keywords

Examples

			a(1)=193=A191746(3) is the first prime in A191746 and a(2)=53069=A191746(11) is the second.
		

Crossrefs

Programs

  • Mathematica
    (* function a037074[ ] and support functions are defined in A074040 *)
    a191746[n_] := Rest[FoldList[Plus, 0, a037074[n]]]
    a344147x[n_] := Select[a191746[n], PrimeQ]
    a344147[550]

A071143 Numbers n such that (i) the sum of the distinct primes dividing n is divisible by the largest prime dividing n and (ii) n has exactly 4 distinct prime factors and (iii) n is squarefree.

Original entry on oeis.org

3135, 6279, 8855, 10695, 11571, 16095, 17255, 17391, 20615, 20735, 26691, 28083, 31031, 36519, 41151, 41615, 45695, 46655, 47859, 48495, 50439, 54131, 56823, 57239, 59295, 61295, 66215, 72611, 76055, 76479, 80135, 84135, 88595, 89999, 90951, 93651, 94611
Offset: 1

Views

Author

Labos Elemer, May 13 2002

Keywords

Examples

			n = pqrs, p<q<r<s, p+q+r+s = ks; n = 6279 = 3*7*13*23, sum = 3+7+13+23 = 2*23
		

Crossrefs

Programs

  • Mathematica
    ffi[x_] := Flatten[FactorInteger[x]] lf[x_] := Length[FactorInteger[x]] ba[x_] := Table[Part[ffi[x], 2*w-1], {w, 1, lf[x]}] sb[x_] := Apply[Plus, ba[x]] ma[x_] := Part[Reverse[Flatten[FactorInteger[x]]], 2] amo[x_] := Abs[MoebiusMu[x]] Do[s=sb[n]/ma[n]; If[IntegerQ[s]&&Equal[lf[n], 4]&& !Equal[amo[n], 0], Print[{n, ba[n]}]], {n, 2, 1000000}]
    s = {}; Do[Length[f=FactorInteger@n] == 4 && Max[(t = Transpose@f)[[2]]] == 1 && Mod[Plus @@ t[[1]], t[[1,-1]]] == 0 && AppendTo[s,n], {n, 3, 10^6, 2}]; s (* 12 times faster, Giovanni Resta, Apr 10 2013 *)
    sdpQ[n_]:=Module[{fi=FactorInteger[n][[All,1]]},Divisible[Total[fi], Last[ fi]] &&Length[fi]==4&&SquareFreeQ[n]]; Select[Range[100000],sdpQ] (* Harvey P. Dale, May 01 2018 *)

Formula

A008472(n)/A006530(n) is an integer; A001221(n) = 4, n is squarefree.

Extensions

Definition clarified by Harvey P. Dale, May 01 2018

A071144 Numbers n such that sum of distinct primes dividing n is divisible by the largest prime dividing n. Also n has exactly 5 distinct prime factors and n is squarefree.

Original entry on oeis.org

3570, 8970, 10626, 15015, 16530, 20706, 24738, 24882, 36890, 38130, 44330, 49938, 51051, 52170, 54834, 55986, 59570, 62985, 68370, 73554, 74613, 77330, 79458, 81770, 87290, 91266, 96162, 96866, 103730, 106314, 116466, 123234, 128570, 129426, 129930, 138890
Offset: 1

Views

Author

Labos Elemer, May 13 2002

Keywords

Examples

			n = pqrst, p<q<r<s<t, primes, p+q+r+s+t = kt; n = 8970 = 2*3*5*13*23, sum = 46 = 2*23.
		

Crossrefs

Programs

  • Mathematica
    ffi[x_] := Flatten[FactorInteger[x]] lf[x_] := Length[FactorInteger[x]] ba[x_] := Table[Part[ffi[x], 2*w-1], {w, 1, lf[x]}] sb[x_] := Apply[Plus, ba[x]] ma[x_] := Part[Reverse[Flatten[FactorInteger[x]]], 2] amo[x_] := Abs[MoebiusMu[x]] Do[s=sb[n]/ma[n]; If[IntegerQ[s]&&Equal[lf[n], 5]&& !Equal[amo[n], 0], Print[{n, ba[n]}]], {n, 2, 1000000}]
    sdpQ[n_]:=Module[{fi=FactorInteger[n][[;;,1]]},Length[fi]==5&&SquareFreeQ[n]&&Mod[Total[ fi],Max[fi]]==0]; Select[Range[150000],sdpQ] (* Harvey P. Dale, May 04 2023 *)

Formula

A008472(n)/A006530(n) is an integer; A001221(n) = 5, n is squarefree.

A071145 Numbers n such that sum of distinct primes dividing n is divisible by the largest prime dividing n. Also n has exactly 6 distinct prime factors and n is squarefree.

Original entry on oeis.org

72930, 106590, 190190, 222870, 335478, 397670, 620310, 836418, 844305, 884442, 1008678, 1195670, 1218945, 1247290, 1704794, 1761110, 1799798, 2086238, 2206022, 2328410, 2485830, 2496585, 2517258, 2863718, 2903538, 3024021, 3157665, 3172785, 3291890
Offset: 1

Views

Author

Labos Elemer, May 13 2002

Keywords

Examples

			n = pqrstw, p<q<r<s<t<w, primes, p+q+r+s+t+w = kt; n = 106590 = 2*3*5*11*17*19; sum = 2+3+5+11+17+19 = 57 = 3*19 (quotient=3) (Corrected Mar 06 2006.)
		

Crossrefs

Programs

  • Mathematica
    ffi[x_] := Flatten[FactorInteger[x]] lf[x_] := Length[FactorInteger[x]] ba[x_] := Table[Part[ffi[x], 2*w-1], {w, 1, lf[x]}] sb[x_] := Apply[Plus, ba[x]] ma[x_] := Part[Reverse[Flatten[FactorInteger[x]]], 2] amo[x_] := Abs[MoebiusMu[x]] Do[s=sb[n]/ma[n]; If[IntegerQ[s]&&Equal[lf[n], 6]&& !Equal[amo[n], 0], Print[{n, ba[n]}]], {n, 2, 1000000}]

Formula

A008472(n)/A006530(n) is an integer; A001221(n) = 6, n is squarefree.

A079877 Numbers that are divisible by at least one pair of twin primes (A001097).

Original entry on oeis.org

15, 30, 35, 45, 60, 70, 75, 90, 105, 120, 135, 140, 143, 150, 165, 175, 180, 195, 210, 225, 240, 245, 255, 270, 280, 285, 286, 300, 315, 323, 330, 345, 350, 360, 375, 385, 390, 405, 420, 429, 435, 450, 455, 465, 480, 490, 495, 510, 525, 540, 555, 560, 570, 572
Offset: 1

Views

Author

Reinhard Zumkeller, Feb 20 2003

Keywords

Comments

Numbers that are divisible by both primes of some twin-prime pair. Harvey P. Dale, Aug 18 2017
By definition, if k is in the sequence, then so is every positive multiple of k. - Richard Locke Peterson, Aug 17 2017

Examples

			429 = 3*11*13 = 3*A001359(3)*A006512(3), therefore 429 is a term.
		

Crossrefs

Programs

  • Mathematica
    Select[Range[600],MemberQ[Differences[Transpose[FactorInteger[#]][[1]]], 2]&] (* Harvey P. Dale, Sep 19 2011 *)

Extensions

Definition clarified by N. J. A. Sloane, Aug 18 2017
Definition further clarified by Sean A. Irvine, Aug 29 2025

A094949 Phi(m)*sigma(m), where m is the product of exactly two primes that differ by 2, where phi=A000010, sigma=A000203.

Original entry on oeis.org

192, 1152, 20160, 103680, 806400, 3104640, 12945600, 26853120, 108201600, 136002240, 362597760, 506160000, 1049630400, 1358807040, 1536796800, 2702128320, 3317529600, 5314118400, 6323748480, 9475464960, 14665694400
Offset: 1

Views

Author

Lekraj Beedassy, Jun 19 2004

Keywords

Comments

If m=p*q for the twin prime pair (p, q), then the relation p^2 + q^2 = 2*(m+2) is evident from equations p*(p+2)=m=q*(q-2). Now phi(m)=(p-1)*(q-1)=p^2 - 1 and sigma(m)=(p+1)*(q+1)=q^2 - 1, so that phi(m)*sigma(m)=(p*q)^2 -(p^2 + q^2)+1=m^2-2*(m+2)+1=(m-3)*(m+1).

Crossrefs

Programs

  • Mathematica
    EulerPhi[#]DivisorSigma[1,#]&/@Times@@@Select[Partition[Prime[ Range[ 200]],2,1],#[[2]]-#[[1]]==2&] (* Harvey P. Dale, Apr 13 2017 *)
  • PARI
    {m=400;p=1;while(p
    				

Formula

a(n)=(m-3)*(m+1), where m=A037074(n).
a(n)=192*A002415(k), where k=A040040(n-1).
a(n) = (A120875(n))^2 - 4 = 4*((A120876(n))^2 - 1). - Lekraj Beedassy, Jul 09 2006

Extensions

Corrected and extended by Jason Earls, Rick L. Shepherd, Vladeta Jovovic and Klaus Brockhaus, Jun 20 2004
Previous Showing 51-60 of 78 results. Next