cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 41-50 of 51 results. Next

A342719 Array read by ascending antidiagonals: T(k, n) is the sum of the consecutive positive integers from 1 to (n - 1)*k placed along the perimeter of an n-th order perimeter-magic k-gon.

Original entry on oeis.org

21, 36, 45, 55, 78, 78, 78, 120, 136, 120, 105, 171, 210, 210, 171, 136, 231, 300, 325, 300, 231, 171, 300, 406, 465, 465, 406, 300, 210, 378, 528, 630, 666, 630, 528, 378, 253, 465, 666, 820, 903, 903, 820, 666, 465, 300, 561, 820, 1035, 1176, 1225, 1176, 1035, 820, 561
Offset: 3

Views

Author

Stefano Spezia, Mar 19 2021

Keywords

Examples

			The array begins:
k\n|   3    4    5    6    7 ...
---+------------------------
3  |  21   45   78  120  171 ...
4  |  36   78  136  210  300 ...
5  |  55  120  210  325  465 ...
6  |  78  171  300  465  666 ...
7  | 105  231  406  630  903 ...
...
		

Crossrefs

Cf. A014105 (n = 3), A033585 (n = 5), A037270 (1st superdiagonal), A081266 (n = 4), A083374 (1st subdiagonal), A110450 (diagonal), A144312 (n = 6), A144314 (n = 7), A342757, A342758.

Programs

  • Mathematica
    T[k_,n_]:=(n-1)k((n-1)k+1)/2; Table[T[k+3-n,n],{k,3,12},{n,3,k}]//Flatten

Formula

O.g.f.: (x^2 - 3*x^2*y + x*y^2 + 3*x^2*y^2)/((1 - x)^3*(1 - y)^3).
E.g.f.: exp(x+y)*x*(x - x*y + y^2 + x*y^2)/2.
T(k, n) = (n - 1)*k*((n - 1)*k + 1)/2.

A269237 a(n) = (n + 1)^2*(5*n^2 + 10*n + 2)/2.

Original entry on oeis.org

1, 34, 189, 616, 1525, 3186, 5929, 10144, 16281, 24850, 36421, 51624, 71149, 95746, 126225, 163456, 208369, 261954, 325261, 399400, 485541, 584914, 698809, 828576, 975625, 1141426, 1327509, 1535464, 1766941, 2023650, 2307361, 2619904, 2963169, 3339106, 3749725, 4197096
Offset: 0

Views

Author

Ilya Gutkovskiy, Apr 09 2016

Keywords

Comments

Partial sums of centered dodecahedral numbers (A005904).

Crossrefs

Programs

  • Magma
    [(n + 1)^2*(5*n^2 + 10*n + 2)/2 : n in [0..50]]; // Wesley Ivan Hurt, Oct 15 2017
  • Maple
    A269237:=n->(n + 1)^2*(5*n^2 + 10*n + 2)/2: seq(A269237(n), n=0..50); # Wesley Ivan Hurt, Oct 15 2017
  • Mathematica
    Table[(n + 1)^2 ((5 n^2 + 10 n + 2)/2), {n, 0, 35}]
    LinearRecurrence[{5, -10, 10, -5, 1}, {1, 34, 189, 616, 1525}, 36]
  • PARI
    x='x+O('x^99); Vec((1+29*x+29*x^2+x^3)/(1-x)^5) \\ Altug Alkan, Apr 10 2016
    

Formula

G.f.: (1 + 29*x + 29*x^2 + x^3)/(1 - x)^5.
E.g.f.: exp(x)*(2 + 66*x + 122*x^2 + 50*x^3 + 5*x^4)/2.
a(n) = 5*a(n-1) - 10*a(n-2) + 10*a(n-3) - 5*a(n-4) + a(n-5).
Sum_{n>=0} 1/a(n) = (5 - Pi^2 - sqrt(15)*Pi*cot(sqrt(3/5)*Pi))/9 = 1.0377796966... . - Vaclav Kotesovec, Apr 10 2016

A321230 Number of set partitions of [n^2] into n n-element subsets having the same sum.

Original entry on oeis.org

1, 1, 1, 2, 392, 3245664, 6534071578530
Offset: 0

Views

Author

Alois P. Heinz, Oct 31 2018

Keywords

Examples

			a(0) = 1: empty.
a(1) = 1: 1.
a(2) = 1: 14|23.
a(3) = 2: 168|249|357, 159|267|348.
		

Crossrefs

Main diagonal of A203986.

Formula

a(n) = A203986(n,n).

A337899 Number of chiral pairs of colorings of the edges of a regular tetrahedron using n or fewer colors.

Original entry on oeis.org

0, 1, 21, 140, 575, 1785, 4606, 10416, 21330, 40425, 71995, 121836, 197561, 308945, 468300, 690880, 995316, 1404081, 1943985, 2646700, 3549315, 4694921, 6133226, 7921200, 10123750, 12814425, 16076151, 20001996
Offset: 1

Views

Author

Robert A. Russell, Sep 28 2020

Keywords

Comments

Each member of a chiral pair is a reflection, but not a rotation, of the other. A regular tetrahedron has 6 edges and Schläfli symbol {3,3}.

Examples

			For a(2)=1, two opposite edges and one edge connecting those have one color; the other three edges have the other color.
		

Crossrefs

Cf. A046023(unoriented), A063842(n-1) (oriented), A037270 (chiral).
Other elements: A000332 (vertices and faces).
Other polyhedra: A337406 (cube/octahedron).
Row 3 of A327085 (chiral pairs of colorings of edges or ridges of an n-simplex).

Programs

  • Mathematica
    Table[(n-1)n^2(n+1)(n^2-2)/24, {n, 40}]

Formula

a(n) = (n-1) * n^2 * (n+1) * (n^2-2) / 24.
a(n) = 1*C(n,2) + 18*C(n,3) + 62*C(n,4) + 75*C(n,5) + 30*C(n,6), where the coefficient of C(n,k) is the number of chiral pairs of colorings using exactly k colors.
a(n) = A046023(n) - A063842(n-1) = (A046023(n) - A037270(n)) / 2 = A063842(n-1) - A037270(n).
G.f.: x^2 * (1+x) * (1+13x+x^2)/(1-x)^7.

A373329 a(n)^2 is the greatest square not exceeding A000217(n^2).

Original entry on oeis.org

0, 1, 3, 6, 11, 18, 25, 35, 45, 57, 71, 85, 102, 119, 138, 159, 181, 204, 229, 255, 283, 312, 342, 374, 407, 442, 478, 515, 554, 595, 636, 679, 724, 770, 817, 866, 916, 968, 1021, 1075, 1131, 1189, 1247, 1307, 1369, 1432, 1496, 1562, 1629, 1698, 1768, 1839, 1912
Offset: 0

Views

Author

Hugo Pfoertner, Jun 01 2024

Keywords

Crossrefs

Programs

  • Maple
    a:= n-> floor(sqrt((t-> t*(t+1)/2)(n^2))):
    seq(a(n), n=0..52);  # Alois P. Heinz, Jun 01 2024
  • Mathematica
    Array[Floor@ Sqrt[(#^4 + #^2)/2] &, 53, 0] (* Michael De Vlieger, Jun 02 2024 *)
  • PARI
    a(n) = sqrtint((n^4+n^2)/2)

Formula

a(n) = A061288(n^2). - Alois P. Heinz, Jun 01 2024

A363460 a(n) is the permanent of the n X n matrix formed by placing 1..n^2 in L-shaped gnomons in alternating directions.

Original entry on oeis.org

1, 1, 11, 556, 74964, 21700112, 11500685084, 10057140949968, 13496937368200000, 26331147893897760544, 71606290155732170272320, 262516365211410942628577408, 1262517559940020030446967822592, 7786463232979127181938238723356160, 60414239829783205320232261233394491136
Offset: 0

Views

Author

Stefano Spezia, Jun 03 2023

Keywords

Comments

The matrix is the upper-left n X n part of the square arrangement in A081344.
The matrix element k is at row A220604(k) and column A220603(k), for k = 1..n^2.

Examples

			a(5) = 21700112 is the permanent of the 5 X 5 matrix
  |  1----2    9---10   25 |
  |       |    |    |    | |
  |  4----3    8   11   24 |
  |  |         |    |    | |
  |  5----6----7   12   23 |
  |                 |    | |
  | 16---15---14---13   22 |
  |  |                   | |
  | 17---18---19---20---21 |
		

Crossrefs

Cf. A006527 (trace), A037270 (elements sum of the matrix), A060736, A061349 (anti trace), A081344, A220603, A220604, A363376 (determinant).

Programs

  • Mathematica
    a={1}; For[n=1, n<=14, n++,k=i=j=1; M[i,j]=k++; For[h=1, h
    				

A051672 Triangle of up-down sums of k-th powers: a(n,k)=sum(i^k,i=1..n)+sum((n-i)^k,i=1..n-1), n,k>0.

Original entry on oeis.org

1, 4, 1, 9, 6, 1, 16, 19, 10, 1, 25, 44, 45, 18, 1, 36, 85, 136, 115, 34, 1, 49, 146, 325, 452, 309, 66, 1, 64, 231, 666, 1333, 1576, 859, 130, 1, 81, 344, 1225, 3254, 5725, 5684, 2445, 258, 1, 100, 489, 2080, 6951, 16626, 25405, 21016, 7075, 514, 1, 121
Offset: 1

Views

Author

Klaus Strassburger (strass(AT)ddfi.uni-duesseldorf.de)

Keywords

Examples

			{1}; {4,1}; {9,6,1}; {16,19,10,1}; {25,44,45,18,1}; ...
		

Crossrefs

Programs

  • Mathematica
    a[n_, k_] := HarmonicNumber[n, -k]+Zeta[-k]-Zeta[-k, n]; Flatten[ Table[ a[n-k+1, k], {n, 1, 11}, {k, 1, n}]] (* Jean-François Alcover, Nov 29 2011 *)

Formula

a(n, 1)=n^2=A000290, a(n, 2)=1/3*n*(2*n^2+1)=A005900, a(n, 3)= (1/2) *n^2*(n^2+1)=A037270, a(n, 4)=1/15*n*(6*n^4+10*n^2-1), a(n, 5)=1/6*n^2*(2*n^4+5*n^2-1)

A094260 Sum of next n numbers/n if n divides the sum else n times the sum of next n numbers.

Original entry on oeis.org

1, 10, 5, 136, 13, 666, 25, 2080, 41, 5050, 61, 10440, 85, 19306, 113, 32896, 145, 52650, 181, 80200, 221, 117370, 265, 166176, 313, 228826, 365, 307720, 421, 405450, 481, 524800, 545, 668746, 613, 840456, 685, 1043290, 761, 1280800, 841, 1556730, 925, 1875016, 1013, 2239786
Offset: 1

Views

Author

Amarnath Murthy, Apr 26 2004

Keywords

Comments

Quasipolynomial of order 2 and degree 5. - Charles R Greathouse IV, Oct 14 2013

Examples

			The sequence is: 1/1, (2+3)*2, (4+5+6)/3, (7+8+9+10)*4, ...
		

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{0,5,0,-10,0,10,0,-5,0,1},{1,10,5,136,13,666,25,2080,41,5050},50] (* Harvey P. Dale, May 01 2020 *)
    fix[c_]:=If[Mod[Total[c],Length[c]]==0,Total[c]/Length[c],Length[c] Total[c]]; fix/@With[ {nn=50},TakeList[ Range[(nn(nn+1))/2],Range[nn]]] (* Harvey P. Dale, Apr 05 2023 *)
  • PARI
    a(n) = if (n%2, (n^2+1)/2, n^2*(n^2+1)/2); \\ Michel Marcus, Aug 23 2022

Formula

For even n, a(n) = A000217(n^2) = n^2*(n^2+1)/2; for odd n, a(n) = (n^2 + 1)/2.
Sum_{n>=1} 1/a(n) = 1 + Pi^2/12 - Pi*cosech(Pi). - Amiram Eldar, Aug 23 2022

Extensions

Edited and extended by Max Alekseyev, Apr 26 2009

A342797 Irregular triangle read by rows: T(n, k) is the k-th antidiagonal sum of the n X n matrices defined in A069480 and A078475.

Original entry on oeis.org

1, 1, 5, 4, 1, 5, 15, 15, 9, 1, 5, 15, 34, 36, 29, 16, 1, 5, 15, 34, 65, 70, 63, 47, 25, 1, 5, 15, 34, 65, 111, 120, 114, 96, 69, 36, 1, 5, 15, 34, 65, 111, 175, 189, 185, 166, 135, 95, 49, 1, 5, 15, 34, 65, 111, 175, 260, 280, 279, 260, 226, 180, 125, 64
Offset: 1

Views

Author

Stefano Spezia, Apr 25 2021

Keywords

Examples

			The triangle T(n, k) begins:
1
1    5    4
1    5   15   15    9
1    5   15   34   36   29   16
1    5   15   34   65   70   63   47   25
...
		

Crossrefs

Cf. A000290 (diagonal), A006003, A037270 (row sums), A060747 (row length), A069480, A078475.

Programs

  • Mathematica
    T[n_,k_]:=If[k<=n,(k+k^3)/2,(k^3+2n-6k^2n-4n^3+k(10n^2-1))/2]; Flatten[Table[T[n,k],{n,8},{k,2n-1}]]

Formula

T(n, k) = A006003(k) for 1 <= k <= n.
T(n, k) = (k^3 + 2*n - 6*k^2*n - 4*n^3 + k*(10*n^2 - 1))/2 for n < k <= 2*n - 1.
T(n, 2*n-1) = A000290(n).

A343155 Irregular triangle T read by rows: T(n, k) is the sum of the consecutive integers placed along the k-th turn of the spiral of the n X n matrix defined in A126224.

Original entry on oeis.org

1, 10, 36, 9, 78, 58, 136, 164, 25, 210, 318, 138, 300, 520, 356, 49, 406, 770, 654, 250, 528, 1068, 1032, 612, 81, 666, 1414, 1490, 1086, 394, 820, 1808, 2028, 1672, 932, 121, 990, 2250, 2646, 2370, 1614, 570, 1176, 2740, 3344, 3180, 2440, 1316, 169, 1378, 3278, 4122, 4102, 3410, 2238, 778
Offset: 1

Views

Author

Stefano Spezia, Apr 07 2021

Keywords

Examples

			The triangle T(n, k) begins:
n\k|   1    2    3    4
---+-------------------
1  |   1
2  |  10
3  |  36    9
4  |  78   58
5  | 136  164   25
6  | 210  318  138
7  | 300  520  356   49
...
For n = 1 the matrix is
      1
and T(1, 1) = 1.
For n = 2 the matrix is
      1, 2
      4, 3
and T(2, 1) = 1 + 2 + 3 + 4 = 4*5/2 = 10.
For n = 3 the matrix is
      1, 2, 3
      8, 9, 4
      7, 6, 5
and T(3, 1) = 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 = 8*9/2 = 36; T(3, 2) = 9.
For n = 4 the matrix is
      1,  2,  3,  4
     12, 13, 14,  5
     11, 16, 15,  6
     10,  9,  8,  7
and T(4, 1) = 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9 + 10 + 11 + 12 = 12*13/2 = 78; T(4, 2) = 13 + 14 + 15 + 16 = (13 + 16)*4/2 = 58.
...
		

Crossrefs

Programs

  • Mathematica
    Table[2(2k-n-1)(3+8k(k-n-1)+4n)+n^2KroneckerDelta[n,2k-1],{n,14},{k,Ceiling[n/2]}]//Flatten

Formula

T(n, k) = 2*(2*k - n - 1)*(3 + 8*k*(k - n - 1) + 4*n) + n^2*0^(n+1-2*k) with 0 < k <= ceiling(n/2).
T(n, 1) = A033585(n-1) for n > 1.
Previous Showing 41-50 of 51 results. Next