cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 41-50 of 118 results. Next

A359411 a(n) is the number of divisors of n that are both infinitary and exponential.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 2, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1
Offset: 1

Views

Author

Amiram Eldar, Dec 30 2022

Keywords

Comments

First differs from A318672 and A325989 at n = 32.
If e > 0 is the exponent of the highest power of p dividing n (where p is a prime), then for each divisor d of n that is both an infinitary and an exponential divisor, the exponent of the highest power of p dividing d is a number k such that k | e and the bitwise AND of e and k is equal to k.
The least term that is higher than 2 is a(216) = 4.
The position of the first appearance of a prime p in this sequence is 2^A359081(p), if A359081(p) > -1. E.g., 2^39 = 549755813888 for p = 3, 2^175 = 4.789...*10^52 for p = 5, and 2^1275 = 6.504...*10^383 for p = 7.
This sequence is unbounded since A246600 is unbounded (see A359082).

Examples

			a(8) = 2 since 8 has 2 divisors that are both infinitary and exponential: 2 and 8.
		

Crossrefs

Programs

  • Mathematica
    s[n_] := DivisorSum[n, 1 &, BitAnd[n, #] == # &]; f[p_, e_] := s[e]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100]
  • PARI
    s(n) = sumdiv(n, d, bitand(d, n)==d);
    a(n) = {my(f = factor(n)); prod(i = 1, #f~, s(f[i,2]));}
    
  • Python
    from math import prod
    from sympy import divisors, factorint
    def A359411(n): return prod(sum(1 for d in divisors(e,generator=True) if e|d == e) for e in factorint(n).values()) # Chai Wah Wu, Sep 01 2023

Formula

Multiplicative with a(p^e) = A246600(e).
a(n) = 1 if and only if n is in A138302.
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = Product_{p prime} (1 + Sum_{k>=1} A246600(k)/p^k) = 1.135514937... .

A038148 Number of 3-infinitary divisors of n: if n = Product p(i)^r(i) and d = Product p(i)^s(i), each s(i) has a digit a <= b in its ternary expansion everywhere that the corresponding r(i) has a digit b, then d is a 3-infinitary-divisor of n.

Original entry on oeis.org

1, 2, 2, 3, 2, 4, 2, 2, 3, 4, 2, 6, 2, 4, 4, 4, 2, 6, 2, 6, 4, 4, 2, 4, 3, 4, 2, 6, 2, 8, 2, 6, 4, 4, 4, 9, 2, 4, 4, 4, 2, 8, 2, 6, 6, 4, 2, 8, 3, 6, 4, 6, 2, 4, 4, 4, 4, 4, 2, 12, 2, 4, 6, 3, 4, 8, 2, 6, 4, 8, 2, 6, 2, 4, 6, 6, 4, 8, 2, 8, 4, 4, 2, 12, 4, 4, 4, 4, 2, 12, 4, 6, 4, 4, 4, 12, 2, 6, 6, 9, 2, 8, 2, 4, 8
Offset: 1

Views

Author

Keywords

Comments

Multiplicative: If e = sum d_k 3^k, then a(p^e) = prod (d_k+1). - Christian G. Bower, May 19 2005

Examples

			2^3*3 is a 3-infinitary-divisor of 2^5*3^2 because 2^3*3 = 2^10*3^1 and 2^5*3^2 = 2^12*3^2 in ternary expanded power. All corresponding digits satisfy the condition. 1 <= 1, 0 <= 2, 1 <= 2.
		

Crossrefs

Programs

Formula

a(1) = 1; for n > 1, a(n) = A006047(A067029(n)) * a(A028234(n)). [After Christian G. Bower's 2005 comment.] - Antti Karttunen, May 28 2017

Extensions

More terms from Naohiro Nomoto, Jun 21 2001
Data section further extended to 105 terms by Antti Karttunen, May 28 2017

A064379 Irregular triangle whose n-th row is a list of numbers that are infinitarily relatively prime to n (n = 2, 3, ...).

Original entry on oeis.org

1, 1, 2, 1, 2, 3, 1, 2, 3, 4, 1, 4, 5, 1, 2, 3, 4, 5, 6, 1, 3, 5, 7, 1, 2, 3, 4, 5, 6, 7, 8, 1, 3, 4, 7, 9, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 1, 2, 5, 7, 9, 10, 11, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 1, 3, 4, 5, 9, 11, 12, 13, 1, 2, 4, 7, 8, 9, 11, 13, 14, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14
Offset: 2

Views

Author

Wouter Meeussen, Sep 27 2001

Keywords

Comments

The integers less than n that have no common infinitary divisors with n.

Examples

			irelprime[6] = {1, 4, 5} because iDivisors[6] = {1, 2, 3, 6} and iDivisors[4] = {1, 4} so 4 is infinitary_relatively_prime to 6 since it lacks common infinitary divisors with 6.
For n = 2 ..8 irelprime[n] gives {1}, {1,2}, {1,2,3}, {1,2,3,4}, {1,4,5}, {1,2,3,4,5,6}, {1,3,5,7}.
Triangle starts:
   2: 1;
   3: 1, 2;
   4: 1, 2, 3;
   5: 1, 2, 3, 4;
   6: 1, 4, 5;
   7: 1, 2, 3, 4, 5, 6;
   8: 1, 3, 5, 7;
   9: 1, 2, 3, 4, 5, 6, 7, 8;
  10: 1, 3, 4, 7, 9;
  11: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10;
  12: 1, 2, 5, 7, 9, 10, 11;
  13: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12;
  14: 1, 3, 4, 5, 9, 11, 12, 13;
  15: 1, 2, 4, 7, 8, 9, 11, 13, 14;
		

Crossrefs

Programs

  • Mathematica
    irelprime[ n_ ] := Select[ temp=iDivisors[ n ]; Range[ n ], Intersection[ iDivisors[ # ], temp ]==={1}& ]; (* with iDivisors of n as *) bitty[ k_ ] := Union[ Flatten[ Outer[ Plus, Sequence@@{0, #1}&/@Union[ 2^Range[ 0, Floor[ Log[ 2, k ] ] ]*Reverse[ IntegerDigits[ k, 2 ] ] ] ] ] ]; iDivisors[ k_Integer ] := Sort[ (Times @@(First[ it ]^(#1/.z-> List))&)/@Flatten[ Outer[ z, Sequence@@bitty/@Last[ it=Transpose[ FactorInteger[ k ] ] ], 1 ] ] ]; iDivisors[ 1 ] := {1};
    infCoprimeQ[n1_, n2_] := Module[{g = GCD[n1, n2]}, If[g == 1, True, AllTrue[ FactorInteger[g][[;; , 1]], BitAnd @@ IntegerExponent[{n1, n2}, #] == 0 &]]]; row[n_] := Select[Range[n - 1], infCoprimeQ[#, n] &]; Table[row[n], {n, 2, 16}] // Flatten (* Amiram Eldar, Mar 26 2023 *)
  • PARI
    isinfcoprime(n1, n2) = {my(g = gcd(n1, n2), p, e1, e2); if(g == 1,return(1)); p = factor(g)[, 1]; for(i=1, #p, e1 = valuation(n1, p[i]); e2 = valuation(n2, p[i]); if(bitand(e1, e2) > 0, return(0))); 1; }
    row(n) = select(x->isinfcoprime(x, n), vector(n-1, i, i)); \\ Amiram Eldar, Mar 26 2023

A074848 Number of 4-infinitary divisors of n.

Original entry on oeis.org

1, 2, 2, 3, 2, 4, 2, 4, 3, 4, 2, 6, 2, 4, 4, 2, 2, 6, 2, 6, 4, 4, 2, 8, 3, 4, 4, 6, 2, 8, 2, 4, 4, 4, 4, 9, 2, 4, 4, 8, 2, 8, 2, 6, 6, 4, 2, 4, 3, 6, 4, 6, 2, 8, 4, 8, 4, 4, 2, 12, 2, 4, 6, 6, 4, 8, 2, 6, 4, 8, 2, 12, 2, 4, 6, 6, 4, 8, 2, 4, 2, 4, 2, 12, 4, 4, 4, 8, 2, 12, 4, 6, 4, 4, 4, 8, 2, 6, 6, 9, 2, 8, 2, 8, 8
Offset: 1

Views

Author

Yasutoshi Kohmoto, Sep 10 2002

Keywords

Comments

If n = Product p(i)^r(i) and d = Product p(i)^s(i), each s(i) has a digit a<=b in its 4-ary expansion everywhere that the corresponding r(i) has a digit b, then d is a 4-infinitary-divisor of n.

Examples

			2^4*3 is a 4-infinitary-divisor of 2^5*3^2 because 2^4*3 = 2^10*3^1 and 2^5*3^2 = 2^11*3^2 in 4-ary expanded power. All corresponding digits satisfy the condition. 1<=1, 0<=1, 1<=2.
		

Crossrefs

Programs

  • Maple
    A074848 := proc(n) if n= 1 then 1; else ifa := ifactors(n)[2] ; a := 1; for f in ifa do e := convert(op(2,f),base,4) ; a := a*mul(d+1,d=e) ; end do: end if; end proc:
    seq(A074848(n),n=1..70) ; # R. J. Mathar, Feb 08 2011
  • Mathematica
    f[p_, e_] := Times @@ (IntegerDigits[e, 4] + 1); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100]  (* Amiram Eldar, Sep 09 2020 *)
  • PARI
    A268444(n) = { my(m=1, d); while(n, d = (n%4); m *= (1+d); n = (n-d)/4); m; };
    A074848(n) = factorback(apply(e -> A268444(e), factorint(n)[, 2])) \\ (After A037445) - Antti Karttunen, May 28 2017
    
  • Python
    from math import prod
    from sympy import factorint
    from gmpy2 import digits
    def A268444(n):
        s = digits(n,4)
        return prod((int(d)+1)**s.count(d) for d in '123')
    def A074848(n): return prod(A268444(e) for e in factorint(n).values()) # Chai Wah Wu, Apr 24 2025
  • Scheme
    (definec (A074848 n) (if (= 1 n) n (* (A268444 (A067029 n)) (A074848 (A028234 n))))) ;; Antti Karttunen, May 28 2017
    

Formula

Multiplicative: If e = sum d_k 4^k, then a(p^e) = prod (d_k+1). - Christian G. Bower, May 19 2005
a(1) = 1; for n > 1, a(n) = A268444(A067029(n)) * a(A028234(n)). [After Christian G. Bower's 2005 formula.] - _Antti Karttunen, May 28 2017

Extensions

More terms from Antti Karttunen, May 28 2017
Name shortened by Amiram Eldar, Sep 09 2020

A126171 Number of infinitary amicable pairs (i,j) with i

Original entry on oeis.org

0, 0, 2, 6, 22, 62, 189, 444, 1116, 2594, 6051, 14141
Offset: 1

Views

Author

Ant King, Dec 22 2006

Keywords

Comments

A divisor of n is called infinitary if it is a product of divisors of the form p^{y_a 2^a}, where p^y is a prime power dividing n and sum_a y_a 2^a is the binary representation of y.

Examples

			a(6)=62 because there are 62 infinitary amicable pairs (m,n) with m<n and m<=10^6
		

Crossrefs

Programs

  • Mathematica
    ExponentList[n_Integer, factors_List] := {#, IntegerExponent[n, # ]} & /@ factors; InfinitaryDivisors[1] := {1}; InfinitaryDivisors[n_Integer?Positive] := Module[ { factors = First /@ FactorInteger[n], d = Divisors[n] }, d[[Flatten[Position[ Transpose[ Thread[Function[{f, g}, BitOr[f, g] == g][ #, Last[ # ]]] & /@ Transpose[Last /@ ExponentList[ #, factors] & /@ d]], ?( And @@ # &), {1}]] ]] ] Null; properinfinitarydivisorsum[k] := Plus @@ InfinitaryDivisors[k] - k; InfinitaryAmicableNumberQ[k_] := If[Nest[properinfinitarydivisorsum, k, 2] == k && ! properinfinitarydivisorsum[k] == k, True, False]; data1 = Select[ Range[10^6], InfinitaryAmicableNumberQ[ # ] &]; data2 = properinfinitarydivisorsum[ # ] & /@ data1; data3 = Table[{data1[[k]], data2[[k]]}, {k, 1, Length[data1]}]; data4 = Select[data3, First[ # ] < Last[ # ] &]; Table[Length[Select[data4, First[ # ] < 10^k &]], {k, 1, 6}]

Formula

Infinitary amicable pairs (m,n) satisfy isigma(m)=isigma(n)=m+n, with m

A126173 Larger element of a reduced infinitary amicable pair.

Original entry on oeis.org

2295, 75495, 817479, 1902215, 1341495, 1348935, 2226014, 2421704, 3123735, 3010215, 5644415, 4282215, 7509159, 10106504, 12900734, 24519159, 31356314, 41950359, 43321095, 80870615, 42125144, 85141719, 87689415, 87802407, 86477895, 105993657, 168669879, 129081735
Offset: 1

Author

Ant King, Dec 23 2006

Keywords

Comments

A divisor of n is called infinitary if it is a product of divisors of the form p^{y_a 2^a}, where p^y is a prime power dividing n and sum_a y_a 2^a is the binary representation of y.

Examples

			a(3)=817479 because 817479 is the largest member of the third reduced infinitary amicable pair, (573560,817479)
		

Programs

  • Mathematica
    ExponentList[n_Integer, factors_List] := {#, IntegerExponent[n, # ]} & /@ factors; InfinitaryDivisors[1] := {1}; InfinitaryDivisors[n_Integer?Positive] := Module[ { factors = First /@ FactorInteger[n], d = Divisors[n] }, d[[Flatten[Position[ Transpose[ Thread[Function[{f, g}, BitOr[f, g] == g][ #, Last[ # ]]] & /@ Transpose[Last /@ ExponentList[ #, factors] & /@ d]], ?( And @@ # &), {1}]] ]] ] Null; properinfinitarydivisorsum[k] := Plus @@ InfinitaryDivisors[k] - k; ReducedInfinitaryAmicableNumberQ[n_] := If[properinfinitarydivisorsum[properinfinitarydivisorsum[ n] - 1] == n + 1 && n > 1, True, False]; ReducedInfinitaryAmicablePairList[k_] := (anlist = Select[Range[k], ReducedInfinitaryAmicableNumberQ[ # ] &]; prlist = Table[Sort[{anlist[[n]], properinfinitarydivisorsum[anlist[[n]]] - 1}], {n, 1, Length[anlist]}]; amprlist = Union[prlist, prlist]); data1 = ReducedInfinitaryAmicablePairList[10^7]; Table[Last[data1[[k]]], {k, 1, Length[data1]}]
    fun[p_, e_] := Module[{b = IntegerDigits[e, 2]}, m = Length[b]; Product[If[b[[j]] > 0, 1 + p^(2^(m - j)), 1], {j, 1, m}]]; infs[n_] := Times @@ (fun @@@ FactorInteger[n]) - n; s = {}; Do[k = infs[n] - 1; If[k > n && infs[k] == n + 1, AppendTo[s, k]], {n, 2, 10^5}]; s (* Amiram Eldar, Jan 22 2019 *)

Formula

The values of n for which isigma(m)=isigma(n)=m+n+1, where n>m and isigma(n) is given by A049417(n).

Extensions

a(15)-a(28) from Amiram Eldar, Jan 22 2019

A126174 Smaller member of an augmented infinitary amicable pair.

Original entry on oeis.org

1252216, 1754536, 2166136, 2362360, 6224890, 7626136, 7851256, 9581320, 12480160, 12494856, 13324311, 15218560, 15422536, 19028296, 29180466, 36716680, 37542190, 40682824, 45131416, 45495352, 56523810, 67195305, 71570296, 80524665, 89740456, 93182440, 101304490
Offset: 1

Author

Ant King, Dec 23 2006

Keywords

Comments

A divisor of n is called infinitary if it is a product of divisors of the form p^{y_a 2^a}, where p^y is a prime power dividing n and sum_a y_a 2^a is the binary representation of y.

Examples

			a(3)=2166136 because 2166136 is the smaller element of the third augmented infinitary amicable pair, (2166136,2580105).
		

Programs

  • Mathematica
    ExponentList[n_Integer, factors_List] := {#, IntegerExponent[n, # ]} & /@ factors; InfinitaryDivisors[1] := {1}; InfinitaryDivisors[n_Integer?Positive] := Module[ { factors = First /@ FactorInteger[n], d = Divisors[n] }, d[[Flatten[Position[ Transpose[ Thread[Function[{f, g}, BitOr[f, g] == g][ #, Last[ # ]]] & /@ Transpose[Last /@ ExponentList[ #, factors] & /@ d]], ?( And @@ # &), {1}]] ]] ] Null; properinfinitarydivisorsum[k] := Plus @@ InfinitaryDivisors[k] - k; AugmentedInfinitaryAmicableNumberQ[n_] := If[properinfinitarydivisorsum[properinfinitarydivisorsum[ n] + 1] == n - 1 && ! properinfinitarydivisorsum[n] + 1 == n, True, False]; AugmentedInfinitaryAmicablePairList[k_] := (anlist = Select[Range[k], AugmentedInfinitaryAmicableNumberQ[ # ] &]; prlist = Table[ Sort[{anlist[[n]], properinfinitarydivisorsum[anlist[[n]]] + 1}], {n, 1, Length[anlist]}]; amprlist = Union[prlist, prlist]); data = AugmentedInfinitaryAmicablePairList[10^7]; Table[First[data[[k]]], {k, 1, Length[data]}]
    fun[p_, e_] := Module[{b = IntegerDigits[e, 2]}, m = Length[b]; Product[If[b[[j]] > 0, 1 + p^(2^(m - j)), 1], {j, 1, m}]]; infs[n_] := Times @@ (fun @@@ FactorInteger[n]) - n; s = {}; Do[k = infs[n] + 1; If[k > n && infs[k] == n - 1, AppendTo[s, n]], {n, 2, 10^9}]; s (* Amiram Eldar, Jan 20 2019 *)

Formula

The values of m for which isigma(m)=isigma(n)=m+n-1, where mA049417(n).

Extensions

a(9)-a(27) from Amiram Eldar, Jan 20 2019

A126175 Larger member of an augmented infinitary amicable pair.

Original entry on oeis.org

1483785, 2479065, 2580105, 4895241, 7336455, 9100905, 10350345, 16367481, 17307105, 24829945, 15706090, 27866241, 15439545, 23872185, 53763535, 63075321, 41337555, 60923577, 51394665, 56802249, 110691295, 73809496, 89870985, 82771336, 92586585, 150672921, 108212055
Offset: 1

Author

Ant King, Dec 23 2006

Keywords

Comments

A divisor of n is called infinitary if it is a product of divisors of the form p^{y_a 2^a}, where p^y is a prime power dividing n and sum_a y_a 2^a is the binary representation of y.

Examples

			a(3)=2580105 because 2580105 is the larger member of the third augmented infinitary amicable pair, (2166136,2580105).
		

Programs

  • Mathematica
    ExponentList[n_Integer, factors_List] := {#, IntegerExponent[n, # ]} & /@ factors; InfinitaryDivisors[1] := {1}; InfinitaryDivisors[n_Integer?Positive] := Module[ { factors = First /@ FactorInteger[n], d = Divisors[n] }, d[[Flatten[Position[ Transpose[ Thread[Function[{f, g}, BitOr[f, g] == g][ #, Last[ # ]]] & /@ Transpose[Last /@ ExponentList[ #, factors] & /@ d]], ?( And @@ # &), {1}]] ]] ] Null; properinfinitarydivisorsum[k] := Plus @@ InfinitaryDivisors[k] - k; AugmentedInfinitaryAmicableNumberQ[n_] := If[properinfinitarydivisorsum[properinfinitarydivisorsum[ n] + 1] == n - 1 && ! properinfinitarydivisorsum[n] + 1 == n, True, False]; AugmentedInfinitaryAmicablePairList[k_] := (anlist = Select[Range[k], AugmentedInfinitaryAmicableNumberQ[ # ] &]; prlist = Table[ Sort[{anlist[[n]], properinfinitarydivisorsum[anlist[[n]]] + 1}], {n, 1, Length[anlist]}]; amprlist = Union[prlist, prlist]); data = AugmentedInfinitaryAmicablePairList[10^7]; Table[Last[data[[k]]], {k, 1, Length[data]}]
    fun[p_, e_] := Module[{b = IntegerDigits[e, 2]}, m = Length[b]; Product[If[b[[j]] > 0, 1 + p^(2^(m - j)), 1], {j, 1, m}]]; infs[n_] := Times @@ (fun @@@ FactorInteger[n]) - n; s = {}; Do[k = infs[n] + 1; If[k > n && infs[k] == n - 1, AppendTo[s, k]], {n, 2, 10^9}]; s (* Amiram Eldar, Jan 20 2019 *)

Formula

The values of n for which isigma(m)=isigma(n)=m+n-1, where n>m and isigma(n) is given by A049417(n).

Extensions

a(9)-a(27) from Amiram Eldar, Jan 20 2019

A306736 Exponential infinitary highly composite numbers: where the number of exponential infinitary divisors (A307848) increases to record.

Original entry on oeis.org

1, 4, 36, 576, 14400, 705600, 57153600, 6915585600, 1168733966400, 337764116289600, 121932845980545600, 64502475523708622400, 40314047202317889000000, 33904113697149344649000000, 32581853262960520207689000000, 44604557116992952164326241000000, 74980260513665152588232411121000000
Offset: 1

Author

Amiram Eldar, May 01 2019

Keywords

Comments

Subsequence of A025487.
All the terms have prime factors with multiplicities which are infinitary highly composite number (A037992) > 1, similarly to exponential highly composite numbers (A318278) whose prime factors have multiplicities which are highly composite numbers (A002182). Thus all the terms are squares. Their square roots are 1, 2, 6, 24, 120, 840, 7560, 83160, 1081080, 18378360, 349188840, 8031343320, 200783583000, 5822723907000, 180504441117000, ...
Differs from A307845 (exponential unitary highly composite numbers) from n >= 107. a(107) = 2^24 * (3 * 5 * ... * 19)^6 * (23 * 29 * ... * 509)^2 ~ 2.370804... * 10^456, while A307845(107) = (2 * 3 * 5 * ... * 19)^6 * (23 * 29 * ... * 521)^2 ~ 2.454885... * 10^456.

Programs

  • Mathematica
    di[1] = 1; di[n_] := Times @@ Flatten[2^DigitCount[#, 2, 1] & /@ FactorInteger[n][[All, 2]]]; fun[p_, e_] := di[e]; a[1] = 1; a[n_] := Times @@ (fun @@@ FactorInteger[n]); s = {}; am = 0; Do[a1 = a[n]; If[a1 > am, am = a1; AppendTo[s, n]], {n, 1, 10^6}]; s (* after Jean-François Alcover at A037445 *)

Formula

A307848(a(n)) = 2^(n-1).

A331109 The number of dual-Zeckendorf-infinitary divisors of n = Product_{i} p(i)^r(i): divisors d = Product_{i} p(i)^s(i), such that the dual Zeckendorf expansion (A104326) of each s(i) contains only terms that are in the dual Zeckendorf expansion of r(i).

Original entry on oeis.org

1, 2, 2, 2, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 4, 4, 2, 4, 2, 4, 4, 4, 2, 8, 2, 4, 4, 4, 2, 8, 2, 4, 4, 4, 4, 4, 2, 4, 4, 8, 2, 8, 2, 4, 4, 4, 2, 8, 2, 4, 4, 4, 2, 8, 4, 8, 4, 4, 2, 8, 2, 4, 4, 8, 4, 8, 2, 4, 4, 8, 2, 8, 2, 4, 4, 4, 4, 8, 2, 8, 4, 4, 2, 8, 4, 4, 4
Offset: 1

Author

Amiram Eldar, Jan 09 2020

Keywords

Comments

Dual-Zeckendorf-infinitary divisors are analogous to infinitary divisors (A077609) with dual Zeckendorf expansion instead of binary expansion.
First differs from A286324 at n = 32.

Examples

			a(32) = 4 since 32 = 2^5 and the dual Zeckendorf expansion of 5 is 110, i.e., its dual Zeckendorf representation is a set with 2 terms: {2, 3}. There are 4 possible exponents of 2: 0, 2, 3 and 5, corresponding to the subsets {}, {2}, {3} and {2, 3}. Thus 32 has 4 dual-Zeckendorf-infinitary divisors: 2^0 = 1, 2^2 = 4, 2^3 = 8, and 2^5 = 32.
		

Programs

  • Mathematica
    fibTerms[n_] := Module[{k = Ceiling[Log[GoldenRatio, n*Sqrt[5]]], t = n, fr = {}}, While[k > 1, If[t >= Fibonacci[k], AppendTo[fr, 1]; t = t - Fibonacci[k], AppendTo[fr, 0]]; k--]; fr];
    dualZeck[n_] := Module[{v = fibTerms[n]}, nv = Length[v]; i = 1; While[i <= nv - 2, If[v[[i]] == 1 && v[[i + 1]] == 0 && v[[i + 2]] == 0, v[[i]] = 0; v[[i + 1]] = 1; v[[i + 2]] = 1; If[i > 2, i -= 3]]; i++]; i = Position[v, _?(# > 0 &)]; If[i == {}, 1, 2^Total[v[[i[[1, 1]] ;; -1]]]]];
    f[p_, e_] := dualZeck[e]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100]

Formula

Multiplicative with a(p^e) = 2^A112310(e).
Previous Showing 41-50 of 118 results. Next