cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 32 results. Next

A193562 Number of divisors of n^4+1.

Original entry on oeis.org

1, 2, 2, 4, 2, 4, 2, 4, 4, 8, 4, 4, 4, 4, 4, 8, 2, 4, 4, 8, 2, 4, 4, 4, 2, 8, 4, 8, 2, 4, 4, 8, 4, 8, 2, 4, 4, 8, 4, 4, 4, 8, 4, 16, 8, 8, 2, 8, 2, 8, 4, 8, 4, 8, 2, 8, 2, 4, 4, 16, 8, 4, 4, 8, 8, 4, 8, 8, 4, 8, 8, 4, 4, 4, 2, 8, 8, 16, 4, 16, 2, 4, 2, 16, 4
Offset: 0

Views

Author

Jonathan Vos Post, Aug 09 2011

Keywords

Comments

This is to n^4+1 as A193432 is to n^2+1.
a(n) = 2 when n^4+1 is prime, iff n is in A037896.

Examples

			a(3) = 4 because 3^4+1 = 82, whose 4 factors are {1, 2, 41, 82}.
		

Crossrefs

Cf. A000005, A002523, A037896, A193432 (number of divisors of n^2+1).

Programs

  • Magma
    [NumberOfDivisors(n^4+1):n in [0..90]]; // Marius A. Burtea, Feb 09 2020
  • Mathematica
    DivisorSigma[0,Range[0,90]^4+1] (* Harvey P. Dale, May 05 2013 *)
  • PARI
    a(n) = numdiv(n^4+1); \\ Michel Marcus, Feb 09 2020
    

Formula

a(n) = A000005(A002523(n)) = d(n^4+1) (also called tau(n^4+1) or sigma_0(n^4+1)), the number of divisors of n^4+1.

A193929 Number of prime factors of n^4 + 1, counted with multiplicity.

Original entry on oeis.org

0, 1, 1, 2, 1, 2, 1, 2, 2, 3, 2, 2, 2, 2, 2, 3, 1, 2, 2, 3, 1, 2, 2, 2, 1, 3, 2, 3, 1, 2, 2, 3, 2, 3, 1, 2, 2, 3, 2, 2, 2, 3, 2, 4, 3, 3, 1, 3, 1, 3, 2, 3, 2, 3, 1, 3, 1, 2, 2, 4, 3, 2, 2, 3, 3, 2, 3, 3, 2, 3, 3, 2, 2, 2, 1, 3, 3, 4, 2, 4, 1, 2, 1, 4, 2, 4, 2, 3, 1, 3, 1, 3, 2, 3, 2, 4, 3, 3, 2, 3, 2, 3, 2, 2, 3, 2, 1, 3, 2, 3, 3, 4, 2, 2, 2, 2, 2, 3, 1
Offset: 0

Views

Author

Jonathan Vos Post, Aug 09 2011

Keywords

Comments

This is to A193330 as A002523(n) = n^4+1 is to A002522(n) = n^2 + 1. a(n) = 2 when n^4+1 is prime, iff n is in A037896.

Examples

			a(9) = 3 because 9^4+1 = 6562 = 2 * 17 * 193, which has 3 prime factors, counted with multiplicity
		

Crossrefs

Programs

  • Magma
    [0] cat [&+[p[2]: p in Factorization(n^4+1)]:n in [1..120]]; // Marius A. Burtea, Feb 09 2020
  • Mathematica
    Join[{0}, Table[Total[Transpose[FactorInteger[n^4 + 1]][[2]]], {n, 100}]] (* T. D. Noe, Aug 10 2011 *)
    Join[{0},Table[PrimeOmega[n^4+1],{n,120}]] (* Harvey P. Dale, Sep 25 2012 *)
  • PARI
    a(n) = bigomega(n^4+1); \\ Michel Marcus, Feb 09 2020
    

Formula

a(n) = A001222(A002523(n)) = bigomega(n^4+1) or Omega(n^4+1).

A217795 Numbers n such that n^4+1 and (n+2)^4+1 are both prime.

Original entry on oeis.org

2, 4, 46, 54, 80, 88, 140, 276, 492, 554, 566, 582, 730, 758, 786, 798, 912, 928, 1142, 1150, 1200, 1236, 1404, 1540, 1552, 1610, 1644, 1650, 1932, 1942, 2044, 2102, 2204, 2222, 2224, 2238, 2254, 2374, 2436, 2486, 2510, 2640, 2674, 2698, 2732, 2734, 3244, 3286
Offset: 1

Views

Author

Michel Lagneau, Oct 12 2012

Keywords

Examples

			4 is in the sequence because 4^4+1 = 257 and 6^4+1 = 1297 are both prime.
		

Crossrefs

Programs

  • Magma
    [n: n in [0..3300] | IsPrime(n^4 + 1) and IsPrime((n + 2)^4 + 1)]; // Vincenzo Librandi, Oct 13 2012
  • Maple
    for n from 0 by 2 to 3500 do: if type(n^4+1,prime)=true and type((n+2)^4+1,prime)=true then printf(`%d, `,n):else fi:od:
  • Mathematica
    lst={}; Do[p=n^4+1; q=(n+2)^4+1;If[PrimeQ[p] && PrimeQ[q], AppendTo[lst, n]], {n, 0, 3000}];lst
    Select[Range[3500],AllTrue[{#^4+1,(#+2)^4+1},PrimeQ]&] (* The program uses the AllTrue function from Mathematica version 10 *) (* Harvey P. Dale, Jul 29 2015 *)

A230261 Number of ways to write 2*n - 1 = p + q with p, p + 6 and q^4 + 1 all prime, where q is a positive integer.

Original entry on oeis.org

0, 0, 0, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 2, 4, 3, 3, 4, 4, 3, 3, 4, 1, 5, 4, 3, 5, 5, 5, 4, 6, 4, 5, 5, 3, 3, 5, 4, 4, 2, 6, 8, 5, 4, 6, 7, 5, 5, 7, 6, 5, 7, 4, 6, 6, 3, 6, 5, 7, 6, 4, 6, 7, 6, 2, 7, 6, 2, 5, 5, 3, 7, 7, 5, 7, 9, 6, 7, 4, 6, 6, 4, 3, 9, 7, 4, 9, 9, 6, 5, 10, 8, 5, 9, 6, 7, 8, 4
Offset: 1

Views

Author

Zhi-Wei Sun, Oct 14 2013

Keywords

Comments

Conjecture: (i) a(n) > 0 for all n > 3. Also, any odd number greater than 6 can be written as p + q (q > 0) with p, p + 6 and q^2 + 1 all prime.
(ii) Any integer n > 1 can be written as x + y (x, y > 0) with x^4 + 1 and y^2 + y + 1 both prime.
(iii) Each integer n > 2 can be expressed as x + y (x, y > 0) with 4*x^2 + 3 and 4*y^2 -3 both prime.
Either of parts (i) and (ii) implies that there are infinitely many primes of the form x^4 + 1.

Examples

			a(6) = 2 since 2*6-1 = 5 + 6 = 7 + 4, and 5, 5+6 = 11, 7, 7+6 = 13, 6^4+1 = 1297 and 4^4+1 = 257 are all prime.
a(25) = 1 since 2*25-1 = 47 + 2, and 47, 47+6 = 53, 2^4+1 = 17 are all prime.
		

Crossrefs

Programs

  • Mathematica
    a[n_]:=Sum[If[PrimeQ[Prime[i]+6]&&PrimeQ[(2n-1-Prime[i])^4+1],1,0],{i,1,PrimePi[2n-2]}]
    Table[a[n],{n,1,100}]
  • PARI
    a(n)=my(s,p=5,q=7);forprime(r=11,2*n+4,if(r-p==6&&isprime((2*n-1-p)^4+1),s++); if(r-q==6&&isprime((2*n-1-q)^4+1),s++); p=q;q=r);s \\ Charles R Greathouse IV, Oct 14 2013

A258805 Primes of the form k^8 + 1.

Original entry on oeis.org

2, 257, 65537, 37588592026706177, 92170395205042177, 147578905600000001, 284936905588473857, 3503536769037500417, 11007531417600000001, 11763130845074473217, 47330370277129322497, 50024641296100000001, 76872571987558646017, 416806419029812551937
Offset: 1

Views

Author

Vincenzo Librandi, Jun 11 2015

Keywords

Crossrefs

Subsequence of A002496, A037896.
Cf. A006314 (associated n), A060890.

Programs

  • Magma
    [a: n in [1..500] | IsPrime(a) where a is n^8+1];
    
  • Mathematica
    Select[Range[500]^8 + 1, PrimeQ]
  • PARI
    is(n)=ispower(n-1,8) && isprime(n) \\ Charles R Greathouse IV, Jun 11 2015

Formula

a(n) = A060890(A006314(n)). - Michel Marcus, Jun 11 2015

A307690 Integers with only one prime factor and whose Euler's totient is a perfect biquadrate.

Original entry on oeis.org

2, 17, 32, 257, 512, 1297, 8192, 65537, 131072, 160001, 331777, 614657, 1336337, 1419857, 2097152, 4477457, 5308417, 8503057, 9834497, 29986577, 33554432, 40960001, 45212177, 59969537, 65610001, 126247697, 193877777, 303595777, 384160001, 406586897, 536870912, 562448657, 655360001
Offset: 1

Views

Author

Bernard Schott, Apr 22 2019

Keywords

Comments

An integer q is a term iff q = p^(4*m+1), when p is prime of the form k^4 + 1 and m >= 0, then phi(q) = (k * (k^4+1)^m)^4. The primitive terms of this sequence are the primes of the form p = k^4 + 1, which are exactly in A037896.

Examples

			a(14) = 1419857 = 17^5 and phi(1419857) = 34^4.
		

Crossrefs

Subsequences: A013776 (2^(4*m+1)), A013806 (17^(4*m+1)), A037896 (primes of the form k^4 + 1).
Intersection of A078164 and A246655.
Cf. A054755 (idem with Euler's totient is square).

Programs

  • Magma
    [n:n in [1..10000000]| #PrimeDivisors(n) eq 1 and IsPower(EulerPhi(n),4)]; // Marius A. Burtea, May 09 2019
  • PARI
    isok(n) = isprimepower(n) && ispower(eulerphi(n), 4); \\ Michel Marcus, Apr 23 2019
    

A000059 Numbers k such that (2k)^4 + 1 is prime.

Original entry on oeis.org

1, 2, 3, 8, 10, 12, 14, 17, 23, 24, 27, 28, 37, 40, 41, 44, 45, 53, 59, 66, 70, 71, 77, 80, 82, 87, 90, 97, 99, 102, 105, 110, 114, 119, 121, 124, 127, 133, 136, 138, 139, 144, 148, 156, 160, 164, 167, 170, 176, 182, 187, 207, 215, 218, 221, 233, 236, 238, 244, 246
Offset: 1

Views

Author

Keywords

Examples

			(2 * 2)^4 + 1 = 4^4 + 1 = 17, which is prime, so 2 is in the sequence.
(2 * 3)^4 + 1 = 6^4 + 1 = 1297, which is prime, so 3 is in the sequence.
(2 * 4)^4 + 1 = 8^4 + 1 = 4097 = 17 * 241, so 4 is not in the sequence.
		

References

  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A037896 (primes of the form n^4 + 1).

Programs

  • Magma
    [n: n in [1..10000] | IsPrime((2*n)^4+1)] # Vincenzo Librandi, Nov 18 2010
    
  • Maple
    A000059:=n->`if`(isprime((2*n)^4+1),n,NULL): seq(A000059(n), n=1..250); # Wesley Ivan Hurt, Aug 26 2014
  • Mathematica
    Select[Range[300], PrimeQ[(2 * #)^4 + 1] &] (* Vladimir Joseph Stephan Orlovsky, Jan 24 2012 *)
  • PARI
    for(n=1,10^3,if(isprime( (2*n)^4+1 ),print1(n,", "))) \\ Hauke Worpel (thebigh(AT)outgun.com), Jun 11 2008 [edited by Michel Marcus, Aug 27 2014]
    
  • Python
    from sympy import isprime
    print([n for n in range(10**3) if isprime(16*n**4+1)])
    # Derek Orr, Aug 27 2014

Formula

a(n) = A000068(n+1)/2 for n >= 1. [Corrected by Jianing Song, Feb 03 2019]

Extensions

More terms from Hugo Pfoertner, Aug 27 2003

A182344 Primes of the form n^4 + 3.

Original entry on oeis.org

3, 19, 4099, 65539, 234259, 456979, 614659, 1336339, 3748099, 14776339, 21381379, 33362179, 45212179, 71639299, 116985859, 146410003, 193877779, 268435459, 322417939, 759333139, 1146228739, 1664966419, 2019963139
Offset: 1

Views

Author

Patrick Devlin, Apr 25 2012

Keywords

Examples

			3 = 0^4 + 3; 19 = 2^4 + 3.
		

Crossrefs

Cf. A037896.

Programs

  • Maple
    # choose N large, then S is the desired set
    f:=n->n^4 + 3:
    S:={}:
    for n from 0 to N do if(isprime(f(n))) then S:=S union {f(n)}: fi: od:
  • Mathematica
    Select[Range[0,250]^4+3,PrimeQ] (* Harvey P. Dale, Jan 10 2013 *)

A182345 Primes of the form n^4 + 5.

Original entry on oeis.org

5, 1301, 331781, 18974741, 37015061, 136048901, 429981701, 1196883221, 1731891461, 4032758021, 4430766101, 12745506821, 13680577301, 43237380101, 74247530261, 92844527621, 151613669381, 196741925141
Offset: 1

Views

Author

Patrick Devlin, Apr 25 2012

Keywords

Comments

All terms == 5 (mod 24). All terms except the first == 101 mod 120. - Robert Israel, Jul 01 2019

Examples

			5 = 1^4 + 5; 1301 = 6^4 + 5.
		

Crossrefs

Cf. A037896.

Programs

  • Maple
    # choose N large, then S is the desired set
    f:=n->n^4 + 5:
    S:={}:
    for n from 0 to N do if(isprime(f(n))) then S:=S union {f(n)}: fi: od:

A217796 Primes of the form n^4+1 such that (n+2)^4+1 is also prime.

Original entry on oeis.org

17, 257, 4477457, 8503057, 40960001, 59969537, 384160001, 5802782977, 58594980097, 94197431057, 102627966737, 114733948177, 283982410001, 330123790097, 381671897617, 405519334417, 691798081537, 741637881857, 1700843738897, 1749006250001, 2073600000001
Offset: 1

Views

Author

Michel Lagneau, Oct 12 2012

Keywords

Comments

The corresponding n are in A217795.

Examples

			257 is in the sequence because  4^4+1 = 257 and (4+2)^4+1 = 1297 are both prime.
		

Crossrefs

Programs

  • Maple
    for n from 0 by 2 to 3500 do: if type(n^4+1,prime)=true and type((n+2)^4+1,prime)=true then printf(`%d, `, n^4+1):else fi:od:
  • Mathematica
    lst={}; Do[p=n^4+1; q=(n+2)^4+1;If[PrimeQ[p] && PrimeQ[q], AppendTo[lst, p]], {n, 0, 3500}];lst
    Select[Partition[Table[n^4+1,{n,1300}],3,1],AllTrue[{#[[1]],#[[3]]}, PrimeQ]&][[All,1]] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Aug 17 2020 *)
Previous Showing 11-20 of 32 results. Next