cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 134 results. Next

A085478 Triangle read by rows: T(n, k) = binomial(n + k, 2*k).

Original entry on oeis.org

1, 1, 1, 1, 3, 1, 1, 6, 5, 1, 1, 10, 15, 7, 1, 1, 15, 35, 28, 9, 1, 1, 21, 70, 84, 45, 11, 1, 1, 28, 126, 210, 165, 66, 13, 1, 1, 36, 210, 462, 495, 286, 91, 15, 1, 1, 45, 330, 924, 1287, 1001, 455, 120, 17, 1, 1, 55, 495, 1716, 3003, 3003, 1820, 680, 153, 19, 1
Offset: 0

Views

Author

Philippe Deléham, Aug 14 2003

Keywords

Comments

Coefficient array for Morgan-Voyce polynomial b(n,x). A053122 (unsigned) is the coefficient array for B(n,x). Reversal of A054142. - Paul Barry, Jan 19 2004
This triangle is formed from even-numbered rows of triangle A011973 read in reverse order. - Philippe Deléham, Feb 16 2004
T(n,k) is the number of nondecreasing Dyck paths of semilength n+1, having k+1 peaks. T(n,k) is the number of nondecreasing Dyck paths of semilength n+1, having k peaks at height >= 2. T(n,k) is the number of directed column-convex polyominoes of area n+1, having k+1 columns. - Emeric Deutsch, May 31 2004
Riordan array (1/(1-x), x/(1-x)^2). - Paul Barry, May 09 2005
The triangular matrix a(n,k) = (-1)^(n+k)*T(n,k) is the matrix inverse of A039599. - Philippe Deléham, May 26 2005
The n-th row gives absolute values of coefficients of reciprocal of g.f. of bottom-line of n-wave sequence. - Floor van Lamoen (fvlamoen(AT)planet.nl), Sep 24 2006
Unsigned version of A129818. - Philippe Deléham, Oct 25 2007
T(n, k) is also the number of idempotent order-preserving full transformations (of an n-chain) of height k >=1 (height(alpha) = |Im(alpha)|) and of waist n (waist(alpha) = max(Im(alpha))). - Abdullahi Umar, Oct 02 2008
A085478 is jointly generated with A078812 as a triangular array of coefficients of polynomials u(n,x): initially, u(1,x) = v(1,x) = 1; for n>1, u(n,x) = u(n-1,x)+x*v(n-1)x and v(n,x) = u(n-1,x)+(x+1)*v(n-1,x). See the Mathematica section. - Clark Kimberling, Feb 25 2012
Per Kimberling's recursion relations, see A102426. - Tom Copeland, Jan 19 2016
Subtriangle of the triangle given by (0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, ...) DELTA (1, 0, 1, -1, 0, 0, 0, 0, 0, 0, 0, ...) where DELTA is the operator defined in A084938. - Philippe Deléham, Mar 26 2012
T(n,k) is also the number of compositions (ordered partitions) of 2*n+1 into 2*k+1 parts which are all odd. Proof: The o.g.f. of column k, x^k/(1-x)^(2*k+1) for k >= 0, is the o.g.f. of the odd-indexed members of the sequence with o.g.f. (x/(1-x^2))^(2*k+1) (bisection, odd part). Thus T(n,k) is obtained from the sum of the multinomial numbers A048996 for the partitions of 2*n+1 into 2*k+1 parts, all of which are odd. E.g., T(3,1) = 3 + 3 from the numbers for the partitions [1,1,5] and [1,3,3], namely 3!/(2!*1!) and 3!/(1!*2!), respectively. The number triangle with the number of these partitions as entries is A152157. - Wolfdieter Lang, Jul 09 2012
The matrix elements of the inverse are T^(-1)(n,k) = (-1)^(n+k)*A039599(n,k). - R. J. Mathar, Mar 12 2013
T(n,k) = A258993(n+1,k) for k = 0..n-1. - Reinhard Zumkeller, Jun 22 2015
The n-th row polynomial in descending powers of x is the n-th Taylor polynomial of the algebraic function F(x)*G(x)^n about 0, where F(x) = (1 + sqrt(1 + 4*x))/(2*sqrt(1 + 4*x)) and G(x) = ((1 + sqrt(1 + 4*x))/2)^2. For example, for n = 4, (1 + sqrt(1 + 4*x))/(2*sqrt(1 + 4*x)) * ((1 + sqrt(1 + 4*x))/2)^8 = (x^4 + 10*x^3 + 15*x^2 + 7*x + 1) + O(x^5). - Peter Bala, Feb 23 2018
Row n also gives the coefficients of the characteristc polynomial of the tridiagonal n X n matrix M_n given in A332602: Phi(n, x) := Det(M_n - x*1_n) = Sum_{k=0..n} T(n, k)*(-x)^k, for n >= 0, with Phi(0, x) := 1. - Wolfdieter Lang, Mar 25 2020
It appears that the largest root of the n-th degree polynomial is equal to the sum of the distinct diagonals of a (2*n+1)-gon including the edge, 1. The largest root of x^3 - 6*x^2 + 5*x - 1 is 5.048917... = the sum of (1 + 1.80193... + 2.24697...). Alternatively, the largest root of the n-th degree polynomial is equal to the square of sigma(2*n+1). Check: 5.048917... is the square of sigma(7), 2.24697.... Given N = 2*n+1, sigma(N) (N odd) can be defined as 1/(2*sin(Pi/(2*N))). Relating to the 9-gon, the largest root of x^4 - 10*x^3 + 15*x^2 - 7*x + 1 is 8.290859..., = the sum of (1 + 1.879385... + 2.532088... + 2.879385...), and is the square of sigma(9), 2.879385... Refer to A231187 for a further clarification of sigma(7). - Gary W. Adamson, Jun 28 2022
For n >=1, the n-th row is given by the coefficients of the minimal polynomial of -4*sin(Pi/(4*n + 2))^2. - Eric W. Weisstein, Jul 12 2023
Denoting this lower triangular array by L, then L * diag(binomial(2*k,k)^2) * transpose(L) is the LDU factorization of A143007, the square array of crystal ball sequences for the A_n X A_n lattices. - Peter Bala, Feb 06 2024
T(n, k) is the number of occurrences of the periodic substring (01)^k in the periodic string (01)^n (see Proposition 4.7 at page 7 in Fang). - Stefano Spezia, Jun 09 2024

Examples

			Triangle begins as:
  1;
  1    1;
  1    3    1;
  1    6    5    1;
  1   10   15    7    1;
  1   15   35   28    9    1;
  1   21   70   84   45   11    1;
  1   28  126  210  165   66   13    1;
  1   36  210  462  495  286   91   15    1;
  1   45  330  924 1287 1001  455  120   17    1;
  1   55  495 1716 3003 3003 1820  680  153   19    1;
...
From _Philippe Deléham_, Mar 26 2012: (Start)
(0, 1, 0, 1, 0, 0, 0, ...) DELTA (1, 0, 1, -1, 0, 0, 0, ...) begins:
  1
  0, 1
  0, 1,  1
  0, 1,  3,   1
  0, 1,  6,   5,   1
  0, 1, 10,  15,   7,   1
  0, 1, 15,  35,  28,   9,  1
  0, 1, 21,  70,  84,  45, 11,  1
  0, 1, 28, 126, 210, 165, 66, 13, 1. (End)
		

Crossrefs

Programs

  • GAP
    Flat(List([0..12], n-> List([0..n], k-> Binomial(n+k, 2*k) ))); # G. C. Greubel, Aug 01 2019
  • Haskell
    a085478 n k = a085478_tabl !! n !! k
    a085478_row n = a085478_tabl !! n
    a085478_tabl = zipWith (zipWith a007318) a051162_tabl a025581_tabl
    -- Reinhard Zumkeller, Jun 22 2015
    
  • Magma
    [Binomial(n+k, 2*k): k in [0..n], n in [0..12]]; // G. C. Greubel, Aug 01 2019
    
  • Maple
    T := (n,k) -> binomial(n+k,2*k): seq(seq(T(n,k), k=0..n), n=0..11);
  • Mathematica
    (* First program *)
    u[1, x_]:= 1; v[1, x_]:= 1; z = 13;
    u[n_, x_]:= u[n-1, x] + x*v[n-1, x];
    v[n_, x_]:= u[n-1, x] + (x+1)*v[n-1, x];
    Table[Expand[u[n, x]], {n, 1, z/2}]
    Table[Expand[v[n, x]], {n, 1, z/2}]
    cu = Table[CoefficientList[u[n, x], x], {n, 1, z}];
    TableForm[cu]
    Flatten[%]   (* A085478 *)
    Table[Expand[v[n, x]], {n, 1, z}]
    cv = Table[CoefficientList[v[n, x], x], {n, 1, z}];
    TableForm[cv]
    Flatten[%]   (* A078812 *) (*Clark Kimberling, Feb 25 2012 *)
    (* Second program *)
    Table[Binomial[n + k, 2 k], {n, 0, 12}, {k, 0, n}] // Flatten (* G. C. Greubel, Aug 01 2019 *)
    CoefficientList[Table[Fibonacci[2 n + 1, Sqrt[x]], {n, 0, 10}], x] // Flatten (* Eric W. Weisstein, Jul 03 2023 *)
    Join[{{1}}, CoefficientList[Table[MinimalPolynomial[-4 Sin[Pi/(4 n + 2)]^2, x], {n, 20}], x]] (* Eric W. Weisstein, Jul 12 2023 *)
  • PARI
    T(n,k) = binomial(n+k,n-k)
    
  • Sage
    [[binomial(n+k,2*k) for k in (0..n)] for n in (0..12)] # G. C. Greubel, Aug 01 2019
    

Formula

T(n, k) = (n+k)!/((n-k)!*(2*k)!).
G.f.: (1-z)/((1-z)^2-tz). - Emeric Deutsch, May 31 2004
Row sums are A001519 (Fibonacci(2n+1)). Diagonal sums are A011782. Binomial transform of A026729 (product of lower triangular matrices). - Paul Barry, Jun 21 2004
T(n, 0) = 1, T(n, k) = 0 if n=0} T(n-1-j, k-1)*(j+1). T(0, 0) = 1, T(0, k) = 0 if k>0; T(n, k) = T(n-1, k-1) + T(n-1, k) + Sum_{j>=0} (-1)^j*T(n-1, k+j)*A000108(j). For the column k, g.f.: Sum_{n>=0} T(n, k)*x^n = (x^k) / (1-x)^(2*k+1). - Philippe Deléham, Feb 15 2004
Sum_{k=0..n} T(n,k)*x^(2*k) = A000012(n), A001519(n+1), A001653(n), A078922(n+1), A007805(n), A097835(n), A097315(n), A097838(n), A078988(n), A097841(n), A097727(n), A097843(n), A097730(n), A098244(n), A097733(n), A098247(n), A097736(n), A098250(n), A097739(n), A098253(n), A097742(n), A098256(n), A097767(n), A098259(n), A097770(n), A098262(n), A097773(n), A098292(n), A097776(n) for x=0,1,2,...,27,28 respectively. - Philippe Deléham, Dec 31 2007
T(2*n,n) = A005809(n). - Philippe Deléham, Sep 17 2009
A183160(n) = Sum_{k=0..n} T(n,k)*T(n,n-k). - Paul D. Hanna, Dec 27 2010
T(n,k) = 2*T(n-1,k) + T(n-1,k-1) - T(n-2,k). - Philippe Deléham, Feb 06 2012
O.g.f. for column k: x^k/(1-x)^(2*k+1), k >= 0. [See the o.g.f. of the triangle above, and a comment on compositions. - Wolfdieter Lang, Jul 09 2012]
E.g.f.: (2/sqrt(x + 4))*sinh((1/2)*t*sqrt(x + 4))*cosh((1/2)*t*sqrt(x)) = t + (1 + x)*t^3/3! + (1 + 3*x + x^2)*t^5/5! + (1 + 6*x + 5*x^2 + x^3)*t^7/7! + .... Cf. A091042. - Peter Bala, Jul 29 2013
T(n, k) = A065941(n+3*k, 4*k) = A108299(n+3*k, 4*k) = A194005(n+3*k, 4*k). - Johannes W. Meijer, Sep 05 2013
Sum_{k=0..n} (-1)^k*T(n,k)*A000108(k) = A000007(n) for n >= 0. - Werner Schulte, Jul 12 2017
Sum_{k=0..floor(n/2)} T(n-k,k)*A000108(k) = A001006(n) for n >= 0. - Werner Schulte, Jul 12 2017
From Peter Bala, Jun 26 2025: (Start)
The n-th row polynomial b(n, x) = (-1)^n * U(2*n, (i/2)*sqrt(x)), where U(n,x) is the n-th Chebyshev polynomial of the second kind.
b(n, x) = (-1)^n * Dir(n, -1 - x/2), where Dir(n, x) is the n-th row polynomial of the triangle A244419.
b(n, -1 - x) is the n-th row polynomial of A098493. (End)

A064189 Triangle T(n,k), 0 <= k <= n, read by rows, defined by: T(0,0)=1, T(n,k)=0 if n < k, T(n,k) = T(n-1,k-1) + T(n-1,k) + T(n-1,k+1).

Original entry on oeis.org

1, 1, 1, 2, 2, 1, 4, 5, 3, 1, 9, 12, 9, 4, 1, 21, 30, 25, 14, 5, 1, 51, 76, 69, 44, 20, 6, 1, 127, 196, 189, 133, 70, 27, 7, 1, 323, 512, 518, 392, 230, 104, 35, 8, 1, 835, 1353, 1422, 1140, 726, 369, 147, 44, 9, 1, 2188, 3610, 3915, 3288, 2235, 1242, 560, 200, 54, 10, 1
Offset: 0

Views

Author

N. J. A. Sloane, Sep 21 2001

Keywords

Comments

Motzkin triangle read in reverse order.
T(n,k) = number of lattice paths from (0,0) to (n,k), staying weakly above the x-axis and consisting of steps U=(1,1), D=(1,-1) and H=(1,0). Example: T(3,1) = 5 because we have HHU, UDU, HUH, UHH and UUD. Columns 0,1,2 and 3 give A001006 (Motzkin numbers), A002026 (first differences of Motzkin numbers), A005322 and A005323, respectively. - Emeric Deutsch, Feb 29 2004
Riordan array ((1-x-sqrt(1-2x-3x^2))/(2x^2), (1-x-sqrt(1-2x-3x^2))/(2x)). Inverse is the array (1/(1+x+x^2), x/(1+x+x^2)) (A104562). - Paul Barry, Mar 15 2005
Inverse binomial matrix applied to A039598. - Philippe Deléham, Feb 28 2007
Triangle T(n,k), 0 <= k <= n, read by rows given by: T(0,0)=1, T(n,k)=0 if k < 0 or if k > n, T(n,0) = T(n-1,0) + T(n-1,1), T(n,k) = T(n-1,k-1) + T(n-1,k) + T(n-1,k+1) for k >= 1. - Philippe Deléham, Mar 27 2007
This triangle belongs to the family of triangles defined by: T(0,0)=1, T(n,k)=0 if k < 0 or if k > n, T(n,0) = x*T(n-1,0) + T(n-1,1), T(n,k) = T(n-1,k-1) + y*T(n-1,k) + T(n-1,k+1) for k >= 1. Other triangles arise from choosing different values for (x,y): (0,0) -> A053121; (0,1) -> A089942; (0,2) -> A126093; (0,3) -> A126970; (1,0)-> A061554; (1,1) -> A064189; (1,2) -> A039599; (1,3) -> A110877; (1,4) -> A124576; (2,0) -> A126075; (2,1) -> A038622; (2,2) -> A039598; (2,3) -> A124733; (2,4) -> A124575; (3,0) -> A126953; (3,1) -> A126954; (3,2) -> A111418; (3,3) -> A091965; (3,4) -> A124574; (4,3) -> A126791; (4,4) -> A052179; (4,5) -> A126331; (5,5) -> A125906. - Philippe Deléham, Sep 25 2007
Equals binomial transform of triangle A053121. - Gary W. Adamson, Oct 25 2008
Consider a semi-infinite chessboard with squares labeled (n,k), ranks or rows n >= 0, files or columns k >= 0; the number of king-paths of length n from (0,0) to (n,k), 0 <= k <= n, is T(n,k). The recurrence relation given above relates to the movements of the king. This is essentially the comment made by Harrie Grondijs for the Motzkin triangle A026300. - Johannes W. Meijer, Oct 10 2010

Examples

			Triangle begins:
  [0]   1;
  [1]   1,    1;
  [2]   2,    2,    1;
  [3]   4,    5,    3,    1;
  [4]   9,   12,    9,    4,   1;
  [5]  21,   30,   25,   14,   5,   1;
  [6]  51,   76,   69,   44,  20,   6,   1;
  [7] 127,  196,  189,  133,  70,  27,   7,  1;
  [8] 323,  512,  518,  392, 230, 104,  35,  8, 1;
  [9] 835, 1353, 1422, 1140, 726, 369, 147, 44, 9, 1;
  ...
From _Philippe Deléham_, Nov 04 2011: (Start)
Production matrix begins:
  1, 1
  1, 1, 1
  0, 1, 1, 1
  0, 0, 1, 1, 1
  0, 0, 0, 1, 1, 1
  0, 0, 0, 0, 1, 1, 1 (End)
		

References

  • See A026300 for additional references and other information.

Crossrefs

A026300 (the main entry for this sequence) with rows reversed.
Row sums give: A005773(n+1) or A307789(n+2).

Programs

  • Maple
    alias(C=binomial): A064189 := (n,k) -> add(C(n,j)*(C(n-j,j+k)-C(n-j,j+k+2)), j=0..n): seq(seq(A064189(n,k), k=0..n),n=0..10); # Peter Luschny, Dec 31 2019
    # Uses function PMatrix from A357368. Adds a row above and a column to the left.
    PMatrix(10, n -> simplify(hypergeom([1 -n/2, -n/2+1/2], [2], 4))); # Peter Luschny, Oct 08 2022
  • Mathematica
    T[0, 0, x_, y_] := 1; T[n_, 0, x_, y_] := x*T[n - 1, 0, x, y] + T[n - 1, 1, x, y]; T[n_, k_, x_, y_] := T[n, k, x, y] = If[k < 0 || k > n, 0, T[n - 1, k - 1, x, y] + y*T[n - 1, k, x, y] + T[n - 1, k + 1, x, y]]; Table[T[n, k, 1, 1], {n, 0, 10}, {k, 0, n}] // Flatten (* G. C. Greubel, Apr 21 2017 *)
    T[n_, k_] := Binomial[n, k] Hypergeometric2F1[(k - n)/2, (k - n + 1)/2, k + 2, 4];
    Table[T[n, k], {n, 0, 10}, {k, 0, n}] // Flatten  (* Peter Luschny, May 19 2021 *)
  • PARI
    {T(n, k) = if( k<0 || k>n, 0, polcoeff( polcoeff( 2 / (1 - x + sqrt(1 - 2*x - 3*x^2) - 2*x*y) + x * O(x^n), n), k))}; /* Michael Somos, Jun 06 2016 */
  • Sage
    def A064189_triangel(dim):
        M = matrix(ZZ,dim,dim)
        for n in range(dim): M[n,n] = 1
        for n in (1..dim-1):
            for k in (0..n-1):
                M[n,k] = M[n-1,k-1]+M[n-1,k]+M[n-1,k+1]
        return M
    A064189_triangel(9) # Peter Luschny, Sep 20 2012
    

Formula

Sum_{k=0..n} T(n, k)*(k+1) = 3^n.
Sum_{k=0..n} T(n, k)*T(n, n-k) = T(2*n, n) - T(2*n, n+2)
G.f.: M/(1-t*z*M), where M = 1 + z*M + z^2*M^2 is the g.f. of the Motzkin numbers (A001006). - Emeric Deutsch, Feb 29 2004
Sum_{k>=0} T(m, k)*T(n, k) = A001006(m+n). - Philippe Deléham, Mar 05 2004
Sum_{k>=0} T(n-k, k) = A005043(n+2). - Philippe Deléham, May 31 2005
Column k has e.g.f. exp(x)*(BesselI(k,2*x)-BesselI(k+2,2*x)). - Paul Barry, Feb 16 2006
T(n,k) = Sum_{j=0..n} C(n,j)*(C(n-j,j+k) - C(n-j,j+k+2)). - Paul Barry, Feb 16 2006
n-th row is generated from M^n * V, where M = the infinite tridiagonal matrix with all 1's in the super, main and subdiagonals; and V = the infinite vector [1,0,0,0,...]. E.g., Row 3 = (4, 5, 3, 1), since M^3 * V = [4, 5, 3, 1, 0, 0, 0, ...]. - Gary W. Adamson, Nov 04 2006
T(n,k) = A122896(n+1,k+1). - Philippe Deléham, Apr 21 2007
T(n,k) = (k/n)*Sum_{j=0..n} binomial(n,j)*binomial(j,2*j-n-k). - Vladimir Kruchinin, Feb 12 2011
Sum_{k=0..n} T(n,k)*(-1)^k*(k+1) = (-1)^n. - Werner Schulte, Jul 08 2015
Sum_{k=0..n} T(n,k)*(k+1)^3 = (2*n+1)*3^n. - Werner Schulte, Jul 08 2015
G.f.: 2 / (1 - x + sqrt(1 - 2*x - 3*x^2) - 2*x*y) = Sum_{n >= k >= 0} T(n, k) * x^n * y^k. - Michael Somos, Jun 06 2016
T(n,k) = binomial(n, k)*hypergeom([(k-n)/2, (k-n+1)/2], [k+2], 4). - Peter Luschny, May 19 2021
The coefficients of the n-th degree Taylor polynomial of the function (1 - x^2)*(1 + x + x^2)^n expanded about the point x = 0 give the entries in row n in reverse order. - Peter Bala, Sep 06 2022

Extensions

More terms from Vladeta Jovovic, Sep 23 2001

A106566 Triangle T(n,k), 0 <= k <= n, read by rows, given by [0, 1, 1, 1, 1, 1, 1, 1, ... ] DELTA [1, 0, 0, 0, 0, 0, 0, 0, ... ] where DELTA is the operator defined in A084938.

Original entry on oeis.org

1, 0, 1, 0, 1, 1, 0, 2, 2, 1, 0, 5, 5, 3, 1, 0, 14, 14, 9, 4, 1, 0, 42, 42, 28, 14, 5, 1, 0, 132, 132, 90, 48, 20, 6, 1, 0, 429, 429, 297, 165, 75, 27, 7, 1, 0, 1430, 1430, 1001, 572, 275, 110, 35, 8, 1, 0, 4862, 4862, 3432, 2002, 1001, 429, 154, 44, 9, 1
Offset: 0

Views

Author

Philippe Deléham, May 30 2005

Keywords

Comments

Catalan convolution triangle; g.f. for column k: (x*c(x))^k with c(x) g.f. for A000108 (Catalan numbers).
Riordan array (1, xc(x)), where c(x) the g.f. of A000108; inverse of Riordan array (1, x*(1-x)) (see A109466).
Diagonal sums give A132364. - Philippe Deléham, Nov 11 2007

Examples

			Triangle begins:
  1;
  0,   1;
  0,   1,   1;
  0,   2,   2,  1;
  0,   5,   5,  3,  1;
  0,  14,  14,  9,  4,  1;
  0,  42,  42, 28, 14,  5, 1;
  0, 132, 132, 90, 48, 20, 6, 1;
From _Paul Barry_, Sep 28 2009: (Start)
Production array is
  0, 1,
  0, 1, 1,
  0, 1, 1, 1,
  0, 1, 1, 1, 1,
  0, 1, 1, 1, 1, 1,
  0, 1, 1, 1, 1, 1, 1,
  0, 1, 1, 1, 1, 1, 1, 1,
  0, 1, 1, 1, 1, 1, 1, 1, 1,
  0, 1, 1, 1, 1, 1, 1, 1, 1, 1 (End)
		

Crossrefs

The three triangles A059365, A106566 and A099039 are the same except for signs and the leading term.
See also A009766, A033184, A059365 for other versions.
The following are all versions of (essentially) the same Catalan triangle: A009766, A030237, A033184, A059365, A099039, A106566, A130020, A047072.

Programs

  • Magma
    A106566:= func< n,k | n eq 0 select 1 else (k/n)*Binomial(2*n-k-1, n-k) >;
    [A106566(n,k): k in [0..n], n in [0..12]]; // G. C. Greubel, Sep 06 2021
    
  • Maple
    A106566 := proc(n,k)
        if n = 0 then
            1;
        elif k < 0 or k > n then
            0;
        else
            binomial(2*n-k-1,n-k)*k/n ;
        end if;
    end proc: # R. J. Mathar, Mar 01 2015
  • Mathematica
    T[n_, k_] := Binomial[2n-k-1, n-k]*k/n; T[0, 0] = 1; Table[T[n, k], {n, 0, 10}, {k, 0, n}] // Flatten (* Jean-François Alcover, Feb 18 2017 *)
    (* The function RiordanArray is defined in A256893. *)
    RiordanArray[1&, #(1-Sqrt[1-4#])/(2#)&, 11] // Flatten (* Jean-François Alcover, Jul 16 2019 *)
  • PARI
    {T(n, k) = if( k<=0 || k>n, n==0 && k==0, binomial(2*n - k, n) * k/(2*n - k))}; /* Michael Somos, Oct 01 2022 */
  • Sage
    def A106566(n, k): return 1 if (n==0) else (k/n)*binomial(2*n-k-1, n-k)
    flatten([[A106566(n,k) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Sep 06 2021
    

Formula

T(n, k) = binomial(2n-k-1, n-k)*k/n for 0 <= k <= n with n > 0; T(0, 0) = 1; T(0, k) = 0 if k > 0.
T(0, 0) = 1; T(n, 0) = 0 if n > 0; T(0, k) = 0 if k > 0; for k > 0 and n > 0: T(n, k) = Sum_{j>=0} T(n-1, k-1+j).
Sum_{j>=0} T(n+j, 2j) = binomial(2n-1, n), n > 0.
Sum_{j>=0} T(n+j, 2j+1) = binomial(2n-2, n-1), n > 0.
Sum_{k>=0} (-1)^(n+k)*T(n, k) = A064310(n). T(n, k) = (-1)^(n+k)*A099039(n, k).
Sum_{k=0..n} T(n, k)*x^k = A000007(n), A000108(n), A000984(n), A007854(n), A076035(n), A076036(n), A127628(n), A126694(n), A115970(n) for x = 0,1,2,3,4,5,6,7,8 respectively.
Sum_{k>=0} T(n, k)*x^(n-k) = C(x, n); C(x, n) are the generalized Catalan numbers.
Sum_{j=0..n-k} T(n+k,2*k+j) = A039599(n,k).
Sum_{j>=0} T(n,j)*binomial(j,k) = A039599(n,k).
Sum_{k=0..n} T(n,k)*A000108(k) = A127632(n).
Sum_{k=0..n} T(n,k)*(x+1)^k*x^(n-k) = A000012(n), A000984(n), A089022(n), A035610(n), A130976(n), A130977(n), A130978(n), A130979(n), A130980(n), A131521(n) for x= 0,1,2,3,4,5,6,7,8,9 respectively. - Philippe Deléham, Aug 25 2007
Sum_{k=0..n} T(n,k)*A000108(k-1) = A121988(n), with A000108(-1)=0. - Philippe Deléham, Aug 27 2007
Sum_{k=0..n} T(n,k)*(-x)^k = A000007(n), A126983(n), A126984(n), A126982(n), A126986(n), A126987(n), A127017(n), A127016(n), A126985(n), A127053(n) for x = 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 respectively. - Philippe Deléham, Oct 27 2007
T(n,k)*2^(n-k) = A110510(n,k); T(n,k)*3^(n-k) = A110518(n,k). - Philippe Deléham, Nov 11 2007
Sum_{k=0..n} T(n,k)*A000045(k) = A109262(n), A000045: Fibonacci numbers. - Philippe Deléham, Oct 28 2008
Sum_{k=0..n} T(n,k)*A000129(k) = A143464(n), A000129: Pell numbers. - Philippe Deléham, Oct 28 2008
Sum_{k=0..n} T(n,k)*A100335(k) = A002450(n). - Philippe Deléham, Oct 30 2008
Sum_{k=0..n} T(n,k)*A100334(k) = A001906(n). - Philippe Deléham, Oct 30 2008
Sum_{k=0..n} T(n,k)*A099322(k) = A015565(n). - Philippe Deléham, Oct 30 2008
Sum_{k=0..n} T(n,k)*A106233(k) = A003462(n). - Philippe Deléham, Oct 30 2008
Sum_{k=0..n} T(n,k)*A151821(k+1) = A100320(n). - Philippe Deléham, Oct 30 2008
Sum_{k=0..n} T(n,k)*A082505(k+1) = A144706(n). - Philippe Deléham, Oct 30 2008
Sum_{k=0..n} T(n,k)*A000045(2k+2) = A026671(n). - Philippe Deléham, Feb 11 2009
Sum_{k=0..n} T(n,k)*A122367(k) = A026726(n). - Philippe Deléham, Feb 11 2009
Sum_{k=0..n} T(n,k)*A008619(k) = A000958(n+1). - Philippe Deléham, Nov 15 2009
Sum_{k=0..n} T(n,k)*A027941(k+1) = A026674(n+1). - Philippe Deléham, Feb 01 2014
G.f.: Sum_{n>=0, k>=0} T(n, k)*x^k*z^n = 1/(1 - x*z*c(z)) where c(z) the g.f. of A000108. - Michael Somos, Oct 01 2022

Extensions

Formula corrected by Philippe Deléham, Oct 31 2008
Corrected by Philippe Deléham, Sep 17 2009
Corrected by Alois P. Heinz, Aug 02 2012

A061554 Square table read by antidiagonals: a(n,k) = binomial(n+k, floor(k/2)).

Original entry on oeis.org

1, 1, 1, 2, 1, 1, 3, 3, 1, 1, 6, 4, 4, 1, 1, 10, 10, 5, 5, 1, 1, 20, 15, 15, 6, 6, 1, 1, 35, 35, 21, 21, 7, 7, 1, 1, 70, 56, 56, 28, 28, 8, 8, 1, 1, 126, 126, 84, 84, 36, 36, 9, 9, 1, 1, 252, 210, 210, 120, 120, 45, 45, 10, 10, 1, 1, 462, 462, 330, 330, 165, 165, 55, 55, 11, 11, 1, 1
Offset: 0

Views

Author

Henry Bottomley, May 17 2001

Keywords

Comments

Equivalently, a triangle read by rows, where the rows are obtained by sorting the elements of the rows of Pascal's triangle (A007318) into descending order. - Philippe Deléham, May 21 2005
Equivalently, as a triangle read by rows, this is T(n,k)=binomial(n,floor((n-k)/2)); column k then has e.g.f. Bessel_I(k,2x)+Bessel_I(k+1,2x). - Paul Barry, Feb 28 2006
Antidiagonal sums are A037952(n+1) = C(n+1,[n/2]). Matrix inverse is the row reversal of triangle A066170. Eigensequence is A125094(n) = Sum_{k=0..n-1} A125093(n-1,k)*A125094(k). - Paul D. Hanna, Nov 20 2006
Riordan array (1/(1-x-x^2*c(x^2)),x*c(x^2)); where c(x)=g.f.for Catalan numbers A000108. - Philippe Deléham, Mar 17 2007
Triangle T(n,k), 0<=k<=n, read by rows given by: T(0,0)=1, T(n,k)=0 if k<0 or if k>n, T(n,0)=T(n-1,0)+T(n-1,1), T(n,k)=T(n-1,k-1)+T(n-1,k+1) for k>=1. - Philippe Deléham, Mar 27 2007
This triangle belongs to the family of triangles defined by: T(0,0)=1, T(n,k)=0 if k<0 or if k>n, T(n,0)=x*T(n-1,0)+T(n-1,1), T(n,k)=T(n-1,k-1)+y*T(n-1,k)+T(n-1,k+1) for k>=1. Other triangles arise by choosing different values for (x,y): (0,0) -> A053121; (0,1) -> A089942; (0,2) -> A126093; (0,3) -> A126970; (1,0)-> A061554; (1,1) -> A064189; (1,2) -> A039599; (1,3) -> A110877; (1,4) -> A124576; (2,0) -> A126075; (2,1) -> A038622; (2,2) -> A039598; (2,3) -> A124733; (2,4) -> A124575; (3,0) -> A126953; (3,1) -> A126954; (3,2) -> A111418; (3,3) -> A091965; (3,4) -> A124574; (4,3) -> A126791; (4,4) -> A052179; (4,5) -> A126331; (5,5) -> A125906. - Philippe Deléham, Sep 25 2007
T(n,k) is the number of paths from (0,k) to some (n,m) which never dip below y=0, touch y=0 at least once and are made up only of the steps (1,1) and (1,-1). This can be proved using the recurrence supplied by Deléham. - Gerald McGarvey, Oct 15 2008
Triangle read by rows = partial sums of A053121 terms starting from the right. - Gary W. Adamson, Oct 24 2008
As a subset of the "family of triangles" (Deleham comment of Sep 25 2007), beginning with a signed variant of A061554, M = (-1,0) = (1; -1, 1; 2, -1, 1; -3, 3, -1, 1; ...) successive binomial transforms of M yield (0,1) - A089942; (1,2) - A039599; (2,3) - A124733; (3,4) - A124574; (4,5) - A126331; ... such that the binomial transform of the triangle generated from (n,n+1) = the triangle generated from (n+1,n+2). Similarly, another subset beginning with A053121 - (0,0), and taking successive binomial transforms yields (1,1) - A064189; (2,2) - A039598; (3,3) - A091965, ... By rows, the triangle generated from (n,n) can be obtained by taking pairwise sums from the (n-1,n) triangle starting from the right. For example, row 2 of (1,2) - A039599 = (2, 3, 1); and taking pairwise sums from the right we obtain (5, 4, 1) = row 2 of (2,2) - A039598. - Gary W. Adamson, Aug 04 2011
The triangle by rows (n) with alternating signs (+-+...) from the top as a set of simultaneous equations solves for diagonal lengths of odd N (N = 2n+1) regular polygons. The constants in each case are powers of c = 2*cos(2*Pi/N). By way of example, the first 3 rows relate to the heptagon and the simultaneous equations are (1,0,0) = 1; (-1,1,0) = c = 1.24697...; and (2,-1,1) = c^2. The answers are 1, 2.24697..., and 1.801...; the 3 distinct diagonal lengths of the heptagon with edge = 1. - Gary W. Adamson, Sep 07 2011

Examples

			The array starts:
   1, 1,  2,  3,  6, 10,  20,  35,   70,  126, ...
   1, 1,  3,  4, 10, 15,  35,  56,  126,  210, ...
   1, 1,  4,  5, 15, 21,  56,  84,  210,  330, ...
   1, 1,  5,  6, 21, 28,  84, 120,  330,  495, ...
   1, 1,  6,  7, 28, 36, 120, 165,  495,  715, ...
   1, 1,  7,  8, 36, 45, 165, 220,  715, 1001, ...
   1, 1,  8,  9, 45, 55, 220, 286, 1001, 1365, ...
   1, 1,  9, 10, 55, 66, 286, 364, 1365, 1820, ...
   1, 1, 10, 11, 66, 78, 364, 455, 1820, 2380, ...
   1, 1, 11, 12, 78, 91, 455, 560, 2380, 3060, ...
Triangle (antidiagonal) version begins:
    1;
    1,   1;
    2,   1,   1;
    3,   3,   1,   1;
    6,   4,   4,   1,   1;
   10,  10,   5,   5,   1,   1;
   20,  15,  15,   6,   6,   1,  1;
   35,  35,  21,  21,   7,   7,  1,  1;
   70,  56,  56,  28,  28,   8,  8,  1,  1;
  126, 126,  84,  84,  36,  36,  9,  9,  1,  1;
  252, 210, 210, 120, 120,  45, 45, 10, 10,  1, 1;
  462, 462, 330, 330, 165, 165, 55, 55, 11, 11, 1, 1; ...
Matrix inverse begins:
   1;
  -1,  1;
  -1, -1,   1;
   1, -2,  -1,   1;
   1,  2,  -3,  -1,  1;
  -1,  3,   3,  -4, -1,  1;
  -1, -3,   6,   4, -5, -1,  1;
   1, -4,  -6,  10,  5, -6, -1,  1;
   1,  4, -10, -10, 15,  6, -7, -1, 1; ...
From _Paul Barry_, May 21 2009: (Start)
Production matrix is
  1, 1,
  1, 0, 1,
  0, 1, 0, 1,
  0, 0, 1, 0, 1,
  0, 0, 0, 1, 0, 1,
  0, 0, 0, 0, 1, 0, 1,
  0, 0, 0, 0, 0, 1, 0, 1 (End)
		

Crossrefs

Rows are A001405, A037952, A037955, A037951, A037956, A037953, A037957 etc. Columns are truncated pairs of A000012, A000027, A000217, A000292, A000332, A000389, A000579, etc. Main diagonal is alternate values of A051036.

Programs

  • Maple
    T := proc(n, k) option remember;
    if n = k then 1 elif k < 0 or n < 0 or k > n then 0
    elif k = 0 then T(n-1, 0) + T(n-1, 1) else T(n-1, k-1) + T(n-1, k+1) fi end:
    for n from 0 to 9 do seq(T(n, k), k = 0..n) od; # Peter Luschny, May 25 2021
  • Mathematica
    t[n_, k_] = Binomial[n, Floor[(n+1)/2 - (-1)^(n-k)*(k+1)/2]]; Flatten[Table[t[n, k], {n, 0, 11}, {k, 0, n}]] (* Jean-François Alcover, May 31 2011 *)
  • PARI
    T(n,k)=binomial(n,(n+1)\2-(-1)^(n-k)*((k+1)\2))

Formula

As a triangle: T(n,k) = binomial(n,m) where m = floor((n+1)/2 - (-1)^(n-k)*(k+1)/2).
a(0, k) = binomial(k, floor(k/2)) = A001405(k); for n>0 T(n, k) = T(n+1, k-2) + T(n-1, k).
n-th row = M^n * V, where M = the infinite tridiagonal matrix with all 1's in the super and subdiagonals and (1,0,0,0,...) in the main diagonal. V = the infinite vector [1,0,0,0,...]. Example: (3,3,1,1,0,0,0,...) = M^3 * V. - Gary W. Adamson, Nov 04 2006
Sum_{k=0..n} T(m,k)*T(n,k) = T(m+n,0) = A001405(m+n). - Philippe Deléham, Feb 26 2007
Sum_{k=0..n} T(n,k)=2^n. - Philippe Deléham, Mar 27 2007
Sum_{k=0..n} T(n,k)*x^k = A127361(n), A126869(n), A001405(n), A000079(n), A127358(n), A127359(n), A127360(n) for x = -2, -1, 0, 1, 2, 3, 4 respectively. - Philippe Deléham, Dec 04 2009

Extensions

Entry revised by N. J. A. Sloane, Nov 22 2006

A321620 The Riordan square of the Riordan numbers, triangle read by rows, T(n, k) for 0 <= k <= n.

Original entry on oeis.org

1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 3, 2, 1, 1, 3, 5, 5, 3, 1, 1, 6, 13, 10, 7, 4, 1, 1, 15, 29, 26, 16, 9, 5, 1, 1, 36, 73, 61, 42, 23, 11, 6, 1, 1, 91, 181, 157, 103, 61, 31, 13, 7, 1, 1, 232, 465, 398, 271, 156, 83, 40, 15, 8, 1, 1, 603, 1205, 1040, 702, 419, 221, 108, 50, 17, 9, 1, 1
Offset: 0

Views

Author

Peter Luschny, Nov 15 2018

Keywords

Comments

If gf is a generating function of the sequence a then by the 'Riordan square of a' we understand the integer triangle given by the Riordan array (gf, gf). This mapping can be seen as an operator RS: Z[[x]] -> Mat[Z].
For instance A039599 is the Riordan square of the Catalan numbers, A172094 is the Riordan square of the little Schröder numbers and A063967 is the Riordan square of the Fibonacci numbers. The Riordan square of the simplest sequence of positive numbers (A000012) is the Pascal triangle.
The generating functions used are listed in the table below. They may differ slightly from those defined elsewhere in order to ensure that RS(a) is invertible (as a matrix). We understand this as a kind of normalization.
---------------------------------------------------------------------------
Sequence a | RS(a) | gf(a)
---------------------------------------------------------------------------
Catalan | A039599 | (1 - sqrt(1 - 4*x))/(2*x).
1, Riordan | A321620 | 1 + 2*x/(1 + x + sqrt(1 - 2*x - 3*x^2)).
Motzkin | A321621 | (1 - x - sqrt(1 - 2*x - 3*x^2))/(2*x^2).
Fine | A321622 | 1 + (1 - sqrt(1 - 4*x))/(3 - sqrt(1 - 4*x)).
large Schröder | A321623 | (1 - x - sqrt(1 - 6*x + x^2))/(2*x).
little Schröder | A172094 | (1 + x - sqrt(1 - 6*x + x^2))/(4*x).
Lucas | A321624 | 1 + x*(1 + 2*x)/(1 - x - x^2).
swinging factorial | A321625 | (1 + x/(1 - 4*x^2))/sqrt(1 - 4*x^2).
ternary trees ||A109956|| u = sqrt(x*3/4); sin(arcsin(3*u)/3)/u.
central trinomial | A116392 | 1/sqrt(1 - 2*x - 3*x^2)
Bell | A154380 | Sum_{k>=0} x^k/Product_{j=1..k}(1 - j*x).
(2*n-1)!! | A321627 | 1/(1-x/(1-2*x/(1-3*x/(1-4*x/(1-5*x/...
powers of 2 | A038208 | 1/(1 - 2*x).
the all 1's seq. | A007318 | 1/(1 - x).
Fibonacci | A063967 | 1/(1 - x - x^2).
tribonacci | A187889 | 1/(1 - x - x^2 - x^3).
tetranacci | A353593 | 1/(1 - x - x^2 - x^3 - x^4).
Jacobsthal | A322942 | (2*x^2-1)/((x + 1)*(2*x - 1))

Examples

			The triangle starts:
   [ 0]   1
   [ 1]   1    1
   [ 2]   0    1    1
   [ 3]   1    1    1   1
   [ 4]   1    3    2   1   1
   [ 5]   3    5    5   3   1   1
   [ 6]   6   13   10   7   4   1   1
   [ 7]  15   29   26  16   9   5   1  1
   [ 8]  36   73   61  42  23  11   6  1  1
   [ 9]  91  181  157 103  61  31  13  7  1 1
   [10] 232  465  398 271 156  83  40 15  8 1 1
		

Crossrefs

Programs

  • Maple
    RiordanSquare := proc(d, n, exp:=false) local td, M, k, m, u, j;
        series(d, x, n+1); td := [seq(coeff(%, x, j), j = 0..n)];
        M := Matrix(n); for k from 1 to n do M[k, 1] := td[k] od;
        for k from 1 to n-1 do for m from k to n-1 do
           M[m+1, k+1] := add(M[j, k]*td[m-j+2], j = k..m) od od;
        if exp then u := 1;
           for k from 1 to n-1 do u := u * k;
              for m from 1 to k do j := `if`(m = 1, u, j/(m-1));
                 M[k+1, m] := M[k+1, m] * j od od fi;
    M end:
    RiordanSquare(1 + 2*x/(1 + x + sqrt(1 - 2*x - 3*x^2)), 8);
  • Mathematica
    RiordanSquare[gf_, len_] := Module[{T}, T[n_, k_] := T[n, k] = If[k == 0, SeriesCoefficient[gf, {x, 0, n}], Sum[T[j, k-1] T[n-j, 0], {j, k-1, n-1}]]; Table[T[n, k], {n, 0, len-1}, {k, 0, n}]];
    M = RiordanSquare[1 + 2x/(1 + x + Sqrt[1 - 2x - 3x^2]), 12];
    M // Flatten (* Jean-François Alcover, Nov 24 2018 *)
  • Sage
    # uses[riordan_array from A256893]
    def riordan_square(gf, len, exp=false):
        return riordan_array(gf, gf, len, exp)
    riordan_square(1 + 2*x/(1 + x + sqrt(1 - 2*x - 3*x^2)), 10)
    # Alternatively, given a list S:
    def riordan_square_array(S):
        N = len(S)
        M = matrix(ZZ, N, N)
        for n in (0..N-1): M[n, 0] = S[n]
        for k in (1..N-1):
            for m in (k..N-1):
                M[m, k] = sum(M[j, k-1]*S[m-j] for j in (k-1..m-1))
        return M
    riordan_square_array([1, 1, 0, 1, 1, 3, 6, 15, 36]) # Peter Luschny, Apr 03 2020

Formula

Given a generating function g and an positive integer N compute the Taylor expansion at the origin t(k) = [x^k] g(x) for k in [0...N-1] and set T(n, 0) = t(n) for n in [0...N-1]. Then compute T(m, k) = Sum_{j in [k-1...m-1]} T(j, k - 1) t(m - j) for k in [1...N-1] and for m in [k...N-1]. The resulting (0, 0)-based lower triangular array is the Riordan square generated by g.

A052179 Triangle of numbers arising in enumeration of walks on cubic lattice.

Original entry on oeis.org

1, 4, 1, 17, 8, 1, 76, 50, 12, 1, 354, 288, 99, 16, 1, 1704, 1605, 700, 164, 20, 1, 8421, 8824, 4569, 1376, 245, 24, 1, 42508, 48286, 28476, 10318, 2380, 342, 28, 1, 218318, 264128, 172508, 72128, 20180, 3776, 455, 32, 1, 1137400, 1447338
Offset: 0

Views

Author

N. J. A. Sloane, Jan 26 2000

Keywords

Comments

Triangle T(n,k), 0 <= k <= n, read by rows given by: T(0,0)=1, T(n,k)=0 if k < 0 or if k > n, T(n,0) = 4*T(n-1,0) + T(n-1,1), T(n,k) = T(n-1,k-1) + 4*T(n-1,k) + T(n-1,k+1) for k >= 1. - Philippe Deléham, Mar 27 2007
Triangle read by rows: T(n,k) = number of lattice paths from (0,0) to (n,k) that do not go below the line y=0 and consist of steps U=(1,1), D=(1,-1) and four types of steps H=(1,0); example: T(3,1)=50 because we have UDU, UUD, 16 HHU paths, 16 HUH paths and 16 UHH paths. - Philippe Deléham, Sep 25 2007
This triangle belongs to the family of triangles defined by: T(0,0)=1, T(n,k)=0 if k < 0 or if k > n, T(n,0) = x*T(n-1,0) + T(n-1,1), T(n,k) = T(n-1,k-1) + y*T(n-1,k) + T(n-1,k+1) for k >= 1. Other triangles arise by choosing different values for (x,y): (0,0) -> A053121; (0,1) -> A089942; (0,2) -> A126093; (0,3) -> A126970; (1,0)-> A061554; (1,1) -> A064189; (1,2) -> A039599; (1,3) -> A110877; (1,4) -> A124576; (2,0) -> A126075; (2,1) -> A038622; (2,2) -> A039598; (2,3) -> A124733; (2,4) -> A124575; (3,0) -> A126953; (3,1) -> A126954; (3,2) -> A111418; (3,3) -> A091965; (3,4) -> A124574; (4,3) -> A126791; (4,4) -> A052179; (4,5) -> A126331; (5,5) -> A125906. - Philippe Deléham, Sep 25 2007
Riordan array ((1-4x-sqrt(1-8x+12x^2))/(2x^2), (1-4x-sqrt(1-8x+12x^2))/(2x)). Inverse of A159764. - Paul Barry, Apr 21 2009
6^n = (n-th row terms) dot (first n+1 terms in (1,2,3,...)). Example: 6^3 = 216 = (76, 50, 12, 1) dot (1, 2, 3, 4) = (76 + 100 + 36 + 4) = 216. - Gary W. Adamson, Jun 15 2011
A subset of the "family of triangles" (Deléham comment of Sep 25 2007) is the succession of binomial transforms beginning with triangle A053121, (0,0); giving -> A064189, (1,1); -> A039598, (2,2); -> A091965, (3,3); -> A052179, (4,4); -> A125906, (5,5) ->, etc.; generally the binomial transform of the triangle generated from (n,n) = that generated from ((n+1),(n+1)). - Gary W. Adamson, Aug 03 2011

Examples

			Triangle begins:
    1;
    4,   1;
   17,   8,   1;
   76,  50,  12,   1;
  354, 288,  99,  16,   1;
  ...
Production matrix begins:
  4, 1;
  1, 4, 1;
  0, 1, 4, 1;
  0, 0, 1, 4, 1;
  0, 0, 0, 1, 4, 1;
  0, 0, 0, 0, 1, 4, 1;
  0, 0, 0, 0, 0, 1, 4, 1;
- _Philippe Deléham_, Nov 04 2011
		

Crossrefs

Programs

  • Maple
    T:= proc(n, k) option remember; `if`(min(n, k)<0, 0,
         `if`(max(n, k)=0, 1, T(n-1, k-1)+4*T(n-1, k)+T(n-1, k+1)))
        end:
    seq(seq(T(n,k), k=0..n), n=0..10);  # Alois P. Heinz, Oct 28 2021
  • Mathematica
    t[0, 0] = 1; t[n_, k_] /; k < 0 || k > n = 0; t[n_, 0] := t[n, 0] = 4*t[n-1, 0] + t[n-1, 1]; t[n_, k_] := t[n, k] = t[n-1, k-1] + 4*t[n-1, k] + t[n-1, k+1]; Flatten[ Table[t[n, k], {n, 0, 9}, {k, 0, n}]] (* Jean-François Alcover, Oct 10 2011, after Philippe Deleham *)

Formula

Sum_{k>=0} T(m, k)*T(n, k) = T(m+n, 0) = A005572(m+n). - Philippe Deléham, Sep 15 2005
n-th row = M^n * V, where M = the infinite tridiagonal matrix with all 1's in the super and subdiagonals and (4,4,4,...) in the main diagonal. E.g., Row 3 = (76, 50, 12, 1) since M^3 * V = [76, 50, 12, 1, 0, 0, 0, ...]. - Gary W. Adamson, Nov 04 2006
Sum_{k=0..n} T(n,k) = A005573(n). - Philippe Deléham, Feb 04 2007
Sum_{k=0..n} T(n,k)*(k+1) = 6^n. - Philippe Deléham, Mar 27 2007
Sum_{k=0..n} T(n,k)*x^k = A033543(n), A064613(n), A005572(n), A005573(n) for x = -2, -1, 0, 1 respectively. - Philippe Deléham, Nov 28 2009
As an infinite lower triangular matrix = the binomial transform of A091965 and 4th binomial transform of A053121. - Gary W. Adamson, Aug 03 2011
G.f.: 2/(1 - 4*x - 2*x*y + sqrt(1 - 8*x + 12*x^2)). - Daniel Checa, Aug 17 2022
G.f. for the m-th column: x^m*(A(x))^(m+1), where A(x) is the g.f. of the sequence counting the walks on the cubic lattice starting and finishing on the xy plane and never going below it (A005572). Explicitly, the g.f. is x^m*((1 - 4*x - sqrt(1 - 8*x + 12*x^2))/(2*x^2))^(m+1). - Daniel Checa, Aug 28 2022

A091965 Triangle read by rows: T(n,k) = number of lattice paths from (0,0) to (n,k) that do not go below the line y=0 and consist of steps U=(1,1), D=(1,-1) and three types of steps H=(1,0) (left factors of 3-Motzkin steps).

Original entry on oeis.org

1, 3, 1, 10, 6, 1, 36, 29, 9, 1, 137, 132, 57, 12, 1, 543, 590, 315, 94, 15, 1, 2219, 2628, 1629, 612, 140, 18, 1, 9285, 11732, 8127, 3605, 1050, 195, 21, 1, 39587, 52608, 39718, 19992, 6950, 1656, 259, 24, 1, 171369, 237129, 191754, 106644, 42498, 12177, 2457
Offset: 0

Views

Author

Emeric Deutsch, Mar 13 2004

Keywords

Comments

T(n,0) = A002212(n+1), T(n,1) = A045445(n+1); row sums give A026378.
The inverse is A207815. - Gary W. Adamson, Dec 17 2006 [corrected by Philippe Deléham, Feb 22 2012]
Reversal of A084536. - Philippe Deléham, Mar 23 2007
Triangle T(n,k), 0 <= k <= n, read by rows given by T(0,0)=1, T(n,k)=0 if k < 0 or if k > n, T(n,0) = 3*T(n-1,0) + T(n-1,1), T(n,k) = T(n-1,k-1) + 3*T(n-1,k) + T(n-1,k+1) for k >= 1. - Philippe Deléham, Mar 27 2007
This triangle belongs to the family of triangles defined by T(0,0)=1, T(n,k)=0 if k < 0 or if k > n, T(n,0) = x*T(n-1,0) + T(n-1,1), T(n,k) = T(n-1,k-1) + y*T(n-1,k) + T(n-1,k+1) for k >= 1. Other triangles arise by choosing different values for (x,y): (0,0) -> A053121; (0,1) -> A089942; (0,2) -> A126093; (0,3) -> A126970; (1,0)-> A061554; (1,1) -> A064189; (1,2) -> A039599; (1,3) -> A110877; (1,4) -> A124576; (2,0) -> A126075; (2,1) -> A038622; (2,2) -> A039598; (2,3) -> A124733; (2,4) -> A124575; (3,0) -> A126953; (3,1) -> A126954; (3,2) -> A111418; (3,3) -> A091965; (3,4) -> A124574; (4,3) -> A126791; (4,4) -> A052179; (4,5) -> A126331; (5,5) -> A125906. - Philippe Deléham, Sep 25 2007
5^n = (n-th row terms) dot (first n+1 terms in (1,2,3,...)). Example for row 4: 5^4 = 625 = (137, 132, 57, 12, 1) dot (1, 2, 3, 4, 5) = (137 + 264 + 171 + 48 + 5) = 625. - Gary W. Adamson, Jun 15 2011
Riordan array ((1-3*x-sqrt(1-6*x+5*x^2))/(2*x^2), (1-3*x-sqrt(1-6*x+5*x^2))/(2*x)). - Philippe Deléham, Feb 19 2012

Examples

			Triangle begins:
     1;
     3,    1;
    10,    6,    1;
    36,   29,    9,    1;
   137,  132,   57,   12,    1;
   543,  590,  315,   94,   15,    1;
  2219, 2628, 1629,  612,  140,   18,    1;
T(3,1)=29 because we have UDU, UUD, 9 HHU paths, 9 HUH paths and 9 UHH paths.
Production matrix begins
  3, 1;
  1, 3, 1;
  0, 1, 3, 1;
  0, 0, 1, 3, 1;
  0, 0, 0, 1, 3, 1;
  0, 0, 0, 0, 1, 3, 1;
  0, 0, 0, 0, 0, 1, 3, 1;
  0, 0, 0, 0, 0, 0, 1, 3, 1;
  0, 0, 0, 0, 0, 0, 0, 1, 3, 1;
  0, 0, 0, 0, 0, 0, 0, 0, 1, 3, 1;
- _Philippe Deléham_, Nov 07 2011
		

References

  • A. Nkwanta, Lattice paths and RNA secondary structures, DIMACS Series in Discrete Math. and Theoretical Computer Science, 34, 1997, 137-147.

Crossrefs

Programs

  • Mathematica
    nmax = 9; t[n_, k_] := ((k+1)*n!*Hypergeometric2F1[k+3/2, k-n, 2k+3, -4]) / ((k+1)!*(n-k)!); Flatten[ Table[ t[n, k], {n, 0, nmax}, {k, 0, n}]] (* Jean-François Alcover, Nov 14 2011, after Vladimir Kruchinin *)
    T[0, 0, x_, y_] := 1; T[n_, 0, x_, y_] := x*T[n - 1, 0, x, y] + T[n - 1, 1, x, y]; T[n_, k_, x_, y_] := T[n, k, x, y] = If[k < 0 || k > n, 0,
    T[n - 1, k - 1, x, y] + y*T[n - 1, k, x, y] + T[n - 1, k + 1, x, y]];
    Table[T[n, k, 3, 3], {n, 0, 10}, {k, 0, n}] // Flatten (* G. C. Greubel, May 22 2017 *)
  • Maxima
    T(n,k):=(k+1)*sum((binomial(2*(m+1),m-k)*binomial(n,m))/(m+1),m,k,n); /* Vladimir Kruchinin, Oct 08 2011 */
    
  • Sage
    @CachedFunction
    def A091965(n,k):
        if n==0 and k==0: return 1
        if k<0 or k>n: return 0
        if k==0: return 3*A091965(n-1,0)+A091965(n-1,1)
        return A091965(n-1,k-1)+3*A091965(n-1,k)+A091965(n-1,k+1)
    for n in (0..7):
        [A091965(n,k) for k in (0..n)] # Peter Luschny, Nov 05 2012

Formula

G.f.: G = 2/(1 - 3*z - 2*t*z + sqrt(1-6*z+5*z^2)). Alternatively, G = M/(1 - t*z*M), where M = 1 + 3*z*M + z^2*M^2.
Sum_{k>=0} T(m, k)*T(n, k) = T(m+n, 0) = A002212(m+n+1). - Philippe Deléham, Sep 14 2005
The triangle may also be generated from M^n * [1,0,0,0,...], where M = an infinite tridiagonal matrix with 1's in the super and subdiagonals and [3,3,3,...] in the main diagonal. - Gary W. Adamson, Dec 17 2006
Sum_{k=0..n} T(n,k)*(k+1) = 5^n. - Philippe Deléham, Mar 27 2007
Sum_{k=0..n} T(n,k)*x^k = A117641(n), A033321(n), A007317(n), A002212(n+1), A026378(n+1) for x = -3, -2, -1, 0, 1 respectively. - Philippe Deléham, Nov 28 2009
T(n,k) = (k+1)*Sum_{m=k..n} binomial(2*(m+1),m-k)*binomial(n,m)/(m+1). - Vladimir Kruchinin, Oct 08 2011
The n-th row polynomial R(n,x) equals the n-th degree Taylor polynomial of the function (1 - x^2)*(1 + 3*x + x^2)^n expanded about the point x = 0. - Peter Bala, Sep 06 2022

A038622 Triangular array that counts rooted polyominoes.

Original entry on oeis.org

1, 2, 1, 5, 3, 1, 13, 9, 4, 1, 35, 26, 14, 5, 1, 96, 75, 45, 20, 6, 1, 267, 216, 140, 71, 27, 7, 1, 750, 623, 427, 238, 105, 35, 8, 1, 2123, 1800, 1288, 770, 378, 148, 44, 9, 1, 6046, 5211, 3858, 2436, 1296, 570, 201, 54, 10, 1, 17303, 15115, 11505, 7590, 4302, 2067, 825, 265
Offset: 0

Views

Author

N. J. A. Sloane, torsten.sillke(AT)lhsystems.com

Keywords

Comments

The PARI program gives any row k and any n-th term for this triangular array in square or right triangle array format. - Randall L Rathbun, Jan 20 2002
Triangle T(n,k), 0 <= k <= n, read by rows given by: T(0,0)=1, T(n,k)=0 if k < 0 or if k > n, T(n,0) = 2*T(n-1,0) + T(n-1,1), T(n,k) = T(n-1,k-1) + T(n-1,k) + T(n-1,k+1) for k >= 1. - Philippe Deléham, Mar 27 2007
This triangle belongs to the family of triangles defined by: T(0,0)=1, T(n,k)=0 if k < 0 or if k > n, T(n,0) = x*T(n-1,0) + T(n-1,1), T(n,k) = T(n-1,k-1) + y*T(n-1,k) + T(n-1,k+1) for k >= 1. Other triangles arise by choosing different values for (x,y): (0,0) -> A053121; (0,1) -> A089942; (0,2) -> A126093; (0,3) -> A126970; (1,0)-> A061554; (1,1) -> A064189; (1,2) -> A039599; (1,3) -> A110877; (1,4) -> A124576; (2,0) -> A126075; (2,1) -> A038622; (2,2) -> A039598; (2,3) -> A124733; (2,4) -> A124575; (3,0) -> A126953; (3,1) -> A126954; (3,2) -> A111418; (3,3) -> A091965; (3,4) -> A124574; (4,3) -> A126791; (4,4) -> A052179; (4,5) -> A126331; (5,5) -> A125906. - Philippe Deléham, Sep 25 2007
Triangle read by rows = partial sums of A064189 terms starting from the right. - Gary W. Adamson, Oct 25 2008
Column k has e.g.f. exp(x)*(Bessel_I(k,2x)+Bessel_I(k+1,2x)). - Paul Barry, Mar 08 2011

Examples

			From _Paul Barry_, Mar 08 2011: (Start)
Triangle begins
     1;
     2,    1;
     5,    3,    1;
    13,    9,    4,   1;
    35,   26,   14,   5,   1;
    96,   75,   45,  20,   6,   1;
   267,  216,  140,  71,  27,   7,  1;
   750,  623,  427, 238, 105,  35,  8, 1;
  2123, 1800, 1288, 770, 378, 148, 44, 9, 1;
Production matrix is
  2, 1,
  1, 1, 1,
  0, 1, 1, 1,
  0, 0, 1, 1, 1,
  0, 0, 0, 1, 1, 1,
  0, 0, 0, 0, 1, 1, 1,
  0, 0, 0, 0, 0, 1, 1, 1,
  0, 0, 0, 0, 0, 0, 1, 1, 1,
  0, 0, 0, 0, 0, 0, 0, 1, 1, 1
(End)
		

Crossrefs

Cf. A005773 (1st column), A005774 (2nd column), A005775, A066822, A000244 (row sums).

Programs

  • Haskell
    import Data.List (transpose)
    a038622 n k = a038622_tabl !! n !! k
    a038622_row n = a038622_tabl !! n
    a038622_tabl = iterate (\row -> map sum $
       transpose [tail row ++ [0,0], row ++ [0], [head row] ++ row]) [1]
    -- Reinhard Zumkeller, Feb 26 2013
  • Maple
    T := (n,k) -> simplify(GegenbauerC(n-k,-n+1,-1/2)+GegenbauerC(n-k-1,-n+1,-1/2)):
    for n from 1 to 9 do seq(T(n,k),k=1..n) od; # Peter Luschny, May 12 2016
  • Mathematica
    nmax = 10; t[n_ /; n > 0, k_ /; k >= 1] := t[n, k] = t[n-1, k-1] + t[n-1, k] + t[n-1, k+1]; t[0, 0] = 1; t[0, ] = 0; t[?Negative, ?Negative] = 0; t[n, 0] := 2 t[n-1, 0] + t[n-1, 1]; Flatten[ Table[ t[n, k], {n, 0, nmax}, {k, 0, n}]](* Jean-François Alcover, Nov 09 2011 *)
  • PARI
    s=[0,1]; {A038622(n,k)=if(n==0,1,t=(2*(n+k)*(n+k-1)*s[2]+3*(n+k-1)*(n+k-2)*s[1])/((n+2*k-1)*n); s[1]=s[2]; s[2]=t; t)}
    

Formula

a(n, k) = a(n-1, k-1) + a(n-1, k) + a(n-1, k+1) for k>0, a(n, k) = 2*a(n-1, k) + a(n-1, k+1) for k=0.
Riordan array ((sqrt(1-2x-3x^2)+3x-1)/(2x(1-3x)),(1-x-sqrt(1-2x-3x^2))/(2x)). Inverse of Riordan array ((1-x)/(1+x+x^2),x/(1+x+x^2)). First column is A005773(n+1). Row sums are 3^n (A000244). If L=A038622, then L*L' is the Hankel matrix for A005773(n+1), where L' is the transpose of L. - Paul Barry, Sep 18 2006
T(n,k) = GegenbauerC(n-k,-n+1,-1/2) + GegenbauerC(n-k-1,-n+1,-1/2). In this form also the missing first column of the triangle 1,1,1,3,7,19,... (cf. A002426) can be computed. - Peter Luschny, May 12 2016
From Peter Bala, Jul 12 2021: (Start)
T(n,k) = Sum_{j = k..n} binomial(n,j)*binomial(j,floor((j-k)/2)).
Matrix product of Riordan arrays ( 1/(1 - x), x/(1 - x) ) * ( (1 - x*c(x^2))/(1 - 2*x), x*c(x^2) ) = A007318 * A061554 (triangle version), where c(x) = (1 - sqrt(1 - 4*x))/(2*x) is the g.f. of the Catalan numbers A000108.
Triangle equals A007318^(-1) * A092392 * A007318. (End)
The n-th row polynomial R(n,x) equals the n-th degree Taylor polynomial of the function (1 + x)*(1 + x + x^2)^n expanded about the point x = 0. - Peter Bala, Sep 06 2022

Extensions

More terms from David W. Wilson

A111418 Right-hand side of odd-numbered rows of Pascal's triangle.

Original entry on oeis.org

1, 3, 1, 10, 5, 1, 35, 21, 7, 1, 126, 84, 36, 9, 1, 462, 330, 165, 55, 11, 1, 1716, 1287, 715, 286, 78, 13, 1, 6435, 5005, 3003, 1365, 455, 105, 15, 1, 24310, 19448, 12376, 6188, 2380, 680, 136, 17, 1, 92378, 75582, 50388
Offset: 0

Views

Author

Philippe Deléham, Nov 13 2005

Keywords

Comments

Riordan array (c(x)/sqrt(1-4*x),x*c(x)^2) where c(x) is g.f. of A000108. Unsigned version of A113187. Diagonal sums are A014301(n+1).
Triangle T(n,k),0<=k<=n, read by rows defined by :T(0,0)=1, T(n,k)=0 if k<0 or if k>n, T(n,0)=3*T(n-1,0)+T(n-1,1), T(n,k)=T(n-1,k-1)+2*T(n-1,k)+T(n-1,k+1) for k>=1. - Philippe Deléham, Mar 22 2007
Reversal of A122366. - Philippe Deléham, Mar 22 2007
Column k has e.g.f. exp(2x)(Bessel_I(k,2x)+Bessel_I(k+1,2x)). - Paul Barry, Jun 06 2007
This triangle belongs to the family of triangles defined by: T(0,0)=1, T(n,k)=0 if k<0 or if k>n, T(n,0)=x*T(n-1,0)+T(n-1,1), T(n,k)=T(n-1,k-1)+y*T(n-1,k)+T(n-1,k+1) for k>=1 . Other triangles arise by choosing different values for (x,y): (0,0) -> A053121; (0,1) -> A089942; (0,2) -> A126093; (0,3) -> A126970; (1,0)-> A061554; (1,1) -> A064189; (1,2) -> A039599; (1,3) -> A110877; (1,4) -> A124576; (2,0) -> A126075; (2,1) -> A038622; (2,2) -> A039598; (2,3) -> A124733; (2,4) -> A124575; (3,0) -> A126953; (3,1) -> A126954; (3,2) -> A111418; (3,3) -> A091965; (3,4) -> A124574; (4,3) -> A126791; (4,4) -> A052179; (4,5) -> A126331; (5,5) -> A125906. - Philippe Deléham, Sep 25 2007
Diagonal sums are A014301(n+1). - Paul Barry, Mar 08 2011
This triangle T(n,k) appears in the expansion of odd powers of Fibonacci numbers F=A000045 in terms of F-numbers with multiples of odd numbers as indices. See the Ozeki reference, p. 108, Lemma 2. The formula is: F_l^(2*n+1) = sum(T(n,k)*(-1)^((n-k)*(l+1))* F_{(2*k+1)*l}, k=0..n)/5^n, n >= 0, l >= 0. - Wolfdieter Lang, Aug 24 2012
Central terms give A052203. - Reinhard Zumkeller, Mar 14 2014
This triangle appears in the expansion of (4*x)^n in terms of the polynomials Todd(n, x):= T(2*n+1, sqrt(x))/sqrt(x) = sum(A084930(n,m)*x^m), n >= 0. This follows from the inversion of the lower triangular Riordan matrix built from A084930 and comparing the g.f. of the row polynomials. - Wolfdieter Lang, Aug 05 2014
From Wolfdieter Lang, Aug 15 2014: (Start)
This triangle is the inverse of the signed Riordan triangle (-1)^(n-m)*A111125(n,m).
This triangle T(n,k) appears in the expansion of x^n in terms of the polynomials todd(k, x):= T(2*k+1, sqrt(x)/2)/(sqrt(x)/2) = S(k, x-2) - S(k-1, x-2) with the row polynomials T and S for the triangles A053120 and A049310, respectively: x^n = sum(T(n,k)*todd(k, x), k=0..n). Compare this with the preceding comment.
The A- and Z-sequences for this Riordan triangle are [1, 2, 1, repeated 0] and [3, 1, repeated 0]. For A- and Z-sequences for Riordan triangles see the W. Lang link under A006232. This corresponds to the recurrences given in the Philippe Deléham, Mar 22 2007 comment above. (End)

Examples

			From _Wolfdieter Lang_, Aug 05 2014: (Start)
The triangle T(n,k) begins:
n\k      0      1      2      3     4     5    6    7   8  9  10 ...
0:       1
1:       3      1
2:      10      5      1
3:      35     21      7      1
4:     126     84     36      9     1
5:     462    330    165     55    11     1
6:    1716   1287    715    286    78    13    1
7:    6435   5005   3003   1365   455   105   15    1
8:   24310  19448  12376   6188  2380   680  136   17   1
9:   92378  75582  50388  27132 11628  3876  969  171  19  1
10: 352716 293930 203490 116280 54264 20349 5985 1330 210 21   1
...
Expansion examples (for the Todd polynomials see A084930 and a comment above):
(4*x)^2 = 10*Todd(n,  0) + 5*Todd(n, 1) + 1*Todd(n, 2) = 10*1 + 5*(-3 + 4*x) + 1*(5 - 20*x + 16*x^2).
(4*x)^3 =  35*1 + 21*(-3 + 4*x) + 7*(5 - 20*x + 16*x^2) + (-7 + 56*x - 112*x^2 +64*x^3)*1. (End)
---------------------------------------------------------------------
Production matrix is
3, 1,
1, 2, 1,
0, 1, 2, 1,
0, 0, 1, 2, 1,
0, 0, 0, 1, 2, 1,
0, 0, 0, 0, 1, 2, 1,
0, 0, 0, 0, 0, 1, 2, 1,
0, 0, 0, 0, 0, 0, 1, 2, 1,
0, 0, 0, 0, 0, 0, 0, 1, 2, 1
- _Paul Barry_, Mar 08 2011
Application to odd powers of Fibonacci numbers F, row n=2:
F_l^5 = (10*(-1)^(2*(l+1))*F_l + 5*(-1)^(1*(l+1))*F_{3*l} + 1*F_{5*l})/5^2, l >= 0. - _Wolfdieter Lang_, Aug 24 2012
		

Crossrefs

Programs

  • Haskell
    a111418 n k = a111418_tabl !! n !! k
    a111418_row n = a111418_tabl !! n
    a111418_tabl = map reverse a122366_tabl
    -- Reinhard Zumkeller, Mar 14 2014
  • Mathematica
    Table[Binomial[2*n+1, n-k], {n,0,10}, {k,0,n}] (* G. C. Greubel, May 22 2017 *)
    T[0, 0, x_, y_] := 1; T[n_, 0, x_, y_] := x*T[n - 1, 0, x, y] + T[n - 1, 1, x, y]; T[n_, k_, x_, y_] := T[n, k, x, y] = If[k < 0 || k > n, 0,
    T[n - 1, k - 1, x, y] + y*T[n - 1, k, x, y] + T[n - 1, k + 1, x, y]];
    Table[T[n, k, 3, 2], {n, 0, 10}, {k, 0, n}] // Flatten (* G. C. Greubel, May 22 2017 *)

Formula

T(n, k) = C(2*n+1, n-k).
Sum_{k=0..n} T(n, k) = 4^n.
Sum_{k, 0<=k<=n}(-1)^k *T(n,k) = binomial(2*n,n) = A000984(n). - Philippe Deléham, Mar 22 2007
T(n,k) = sum{j=k..n, C(n,j)*2^(n-j)*C(j,floor((j-k)/2))}. - Paul Barry, Jun 06 2007
Sum_{k, k>=0} T(m,k)*T(n,k) = T(m+n,0)= A001700(m+n). - Philippe Deléham, Nov 22 2009
G.f. row polynomials: ((1+x) - (1-x)/sqrt(1-4*z))/(2*(x - (1+x)^2*z))
(see the Riordan property mentioned in a comment above). - Wolfdieter Lang, Aug 05 2014

A120730 Another version of Catalan triangle A009766.

Original entry on oeis.org

1, 0, 1, 0, 1, 1, 0, 0, 2, 1, 0, 0, 2, 3, 1, 0, 0, 0, 5, 4, 1, 0, 0, 0, 5, 9, 5, 1, 0, 0, 0, 0, 14, 14, 6, 1, 0, 0, 0, 0, 14, 28, 20, 7, 1, 0, 0, 0, 0, 0, 42, 48, 27, 8, 1, 0, 0, 0, 0, 0, 42, 90, 75, 35, 9, 1, 0, 0, 0, 0, 0, 0, 132, 165, 110, 44, 10, 1
Offset: 0

Views

Author

Philippe Deléham, Aug 17 2006, corrected Sep 15 2006

Keywords

Comments

Triangle T(n,k), 0 <= k <= n, read by rows, given by [0, 1, -1, 0, 0, 1, -1, 0, 0, 1, -1, 0, 0, ...] DELTA [1, 0, 0, -1, 1, 0, 0, -1, 1, 0, 0, -1, 1, ...] where DELTA is the operator defined in A084938.
Aerated version gives A165408. - Philippe Deléham, Sep 22 2009
T(n,k) is the number of length n left factors of Dyck paths having k up steps. Example: T(5,4)=4 because we have UDUUU, UUDUU, UUUDU, and UUUUD, where U=(1,1) and D=(1,-1). - Emeric Deutsch, Jun 19 2011
With zeros omitted: 1,1,1,1,2,1,2,3,1,5,4,1,... = A008313. - Philippe Deléham, Nov 02 2011

Examples

			As a triangle, this begins:
  1;
  0,  1;
  0,  1,  1;
  0,  0,  2,  1;
  0,  0,  2,  3,  1;
  0,  0,  0,  5,  4,  1;
  0,  0,  0,  5,  9,  5,  1;
  0,  0,  0,  0, 14, 14,  6,  1;
  ...
		

Crossrefs

Programs

  • Magma
    A120730:= func< n,k | n gt 2*k select 0 else Binomial(n, k)*(2*k-n+1)/(k+1) >;
    [A120730(n,k): k in [0..n], n in [0..13]]; // G. C. Greubel, Nov 07 2022
    
  • Maple
    G := 4*z/((2*z-1+sqrt(1-4*z^2*t))*(1+sqrt(1-4*z^2*t))): Gser := simplify(series(G, z = 0, 13)): for n from 0 to 12 do P[n] := sort(coeff(Gser, z, n)) end do: for n from 0 to 12 do seq(coeff(P[n], t, k), k = 0 .. n) end do; # yields sequence in triangular form  # Emeric Deutsch, Jun 19 2011
    # second Maple program:
    b:= proc(x, y) option remember; `if`(y<0 or y>x, 0,
         `if`(x=0, 1, add(b(x-1, y+j), j=[-1, 1])))
        end:
    T:= (n, k)-> b(n, 2*k-n):
    seq(seq(T(n, k), k=0..n), n=0..14);  # Alois P. Heinz, Oct 13 2022
  • Mathematica
    b[x_, y_]:= b[x, y]= If[y<0 || y>x, 0, If[x==0, 1, Sum[b[x-1, y+j], {j, {-1, 1}}] ]];
    T[n_, k_] := b[n, 2 k - n];
    Table[Table[T[n, k], {k, 0, n}], {n, 0, 14}] // Flatten (* Jean-François Alcover, Oct 21 2022, after Alois P. Heinz *)
    T[n_, k_]:= If[n>2*k, 0, Binomial[n, k]*(2*k-n+1)/(k+1)];
    Table[T[n, k], {n,0,13}, {k,0,n}]//Flatten (* G. C. Greubel, Nov 07 2022 *)
  • SageMath
    def A120730(n,k): return 0 if (n>2*k) else binomial(n, k)*(2*k-n+1)/(k+1)
    flatten([[A120730(n,k) for k in range(n+1)] for n in range(14)]) # G. C. Greubel, Nov 07 2022

Formula

G.f.: G(t,z) = 4*z/((2*z-1+sqrt(1-4*t*z^2))*(1+sqrt(1-4*t*z^2))). - Emeric Deutsch, Jun 19 2011
Sum_{k=0..n} x^k*T(n,n-k) = A001405(n), A126087(n), A128386(n), A121724(n), A128387(n), A132373(n), A132374(n), A132375(n), A121725(n) for x=1,2,3,4,5,6,7,8,9 respectively. [corrected by Philippe Deléham, Oct 16 2008]
T(2*n,n) = A000108(n); A000108: Catalan numbers.
From Philippe Deléham, Oct 18 2008: (Start)
Sum_{k=0..n} T(n,k)^2 = A000108(n) and Sum_{n>=k} T(n,k) = A000108(k+1).
Sum_{k=0..n} T(n,k)^3 = A003161(n).
Sum_{k=0..n} T(n,k)^4 = A129123(n). (End)
Sum_{k=0..n}, T(n,k)*x^k = A000007(n), A001405(n), A151281(n), A151162(n), A151254(n), A156195(n), A156361(n), A156362(n), A156566(n), A156577(n) for x=0,1,2,3,4,5,6,7,8,9 respectively. - Philippe Deléham, Feb 10 2009
From G. C. Greubel, Nov 07 2022: (Start)
T(n, k) = 0 if n > 2*k, otherwise binomial(n, k)*(2*k-n+1)/(k+1).
Sum_{k=0..n} (-1)^k*T(n,k) = A105523(n).
Sum_{k=0..n} (-1)^k*T(n,k)^2 = -A132889(n), n >= 1.
Sum_{k=0..floor(n/2)} T(n-k, k) = A357654(n).
T(n, n-1) = A001477(n).
T(n, n-2) = [n=2] + A000096(n-3), n >= 2.
T(n, n-3) = 2*[n<5] + A005586(n-5), n >= 3.
T(n, n-4) = 5*[n<7] - 2*[n=4] + A005587(n-7), n >= 4.
T(2*n+1, n+1) = A000108(n+1), n >= 0.
T(2*n-1, n+1) = A099376(n-1), n >= 1. (End)
Previous Showing 21-30 of 134 results. Next