cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 40 results. Next

A177771 a(n) = (prime(n) - 1)!.

Original entry on oeis.org

1, 2, 24, 720, 3628800, 479001600, 20922789888000, 6402373705728000, 1124000727777607680000, 304888344611713860501504000000, 265252859812191058636308480000000
Offset: 1

Views

Author

Giovanni Teofilatto, May 13 2010

Keywords

Comments

By Wilson's theorem, a(n) = -1 (mod p) where p is the n-th prime. - Charles R Greathouse IV, Sep 04 2013

References

  • Paulo Ribenboim, The Little Book of Bigger Primes, Springer-Verlag NY 2004. See p. 21.

Crossrefs

Programs

Formula

a(n) = A010050(A005097(n-1)). a(n)^2 = A177926(n). - R. J. Mathar, May 24 2010

A080087 Number of factors of 5 in the factorial of the n-th prime, counted with multiplicity.

Original entry on oeis.org

0, 0, 1, 1, 2, 2, 3, 3, 4, 6, 7, 8, 9, 9, 10, 12, 13, 14, 15, 16, 16, 18, 19, 20, 22, 24, 24, 25, 25, 26, 31, 32, 33, 33, 35, 37, 38, 39, 40, 41, 43, 44, 46, 46, 47, 47, 51, 53, 55, 55, 56, 57, 58, 62, 63, 64, 65, 66, 68, 69, 69, 71, 75, 76, 76, 77, 81, 82, 84, 84, 86, 87, 89, 90
Offset: 1

Views

Author

Paul D. Hanna, Jan 26 2003

Keywords

Comments

Highest power of 5 dividing prime(n)! = A039716(n), or also the number of trailing end 0's in A039716(n). - Lekraj Beedassy, Oct 31 2010

Crossrefs

Programs

  • Maple
    R:= NULL: v:= 0: p:= 0:
    for i from 1 to 100 do
       q:= p;
       p:= nextprime(p);
       v:= v + add(1+padic:-ordp(x,5), x = 1+floor(q/5) .. floor(p/5));
       R:= R,v;
    od:
    R; # Robert Israel, Sep 27 2023
  • Mathematica
    lst={};Do[p=Prime[n];s=0;While[p>1,p=IntegerPart[p/5];s+=p;];AppendTo[lst,s],{n,5!}];lst (* Vladimir Joseph Stephan Orlovsky, Jul 28 2009 *)
  • PARI
    a(n) = valuation(prime(n)!, 5); \\ Michel Marcus, Jan 15 2015

Formula

a(n) = Sum_{k=1..L} floor(prime(n)/5^k), where L = log(p_n)/log(5).
a(n) = A112765(A039716(n)). - Michel Marcus, Sep 28 2023

A100124 Decimal expansion of Sum_{n>0} 1/prime(n)!.

Original entry on oeis.org

6, 7, 5, 1, 9, 8, 4, 3, 7, 9, 1, 1, 1, 1, 4, 3, 4, 1, 9, 0, 0, 5, 6, 1, 6, 0, 7, 5, 9, 1, 3, 5, 7, 2, 9, 9, 5, 3, 9, 2, 7, 6, 7, 8, 8, 5, 6, 5, 1, 3, 2, 6, 5, 1, 5, 6, 0, 3, 4, 1, 0, 6, 4, 5, 1, 6, 8, 8, 5, 8, 6, 1, 4, 8, 5, 4, 2, 4, 4, 3, 3, 4, 4, 1, 1, 4, 6, 2, 7, 2, 2, 8, 0, 2, 7, 8, 9, 5, 7, 1
Offset: 0

Views

Author

Mark Hudson (mrmarkhudson(AT)hotmail.com), Nov 11 2004

Keywords

Comments

Mingarelli shows that this constant is irrational. - Charles R Greathouse IV, Nov 05 2013
Convergence follows because A100124 < e - 2 = 0.71828... = 1/2! + 1/3! + 1/4! + 1/5! because e - 2 contains every term in A100124. The relation to e suggests a different question: is this constant not just irrational but also transcendental? - Timothy Varghese, May 07 2014
This is e times the probability that a prime is chosen from a Poisson distribution with lambda = 1. - Charles R Greathouse IV, Dec 07 2014

Examples

			0.67519843791111434190056160759135729953927678856513265156034106451688586148...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[Sum[1/Prime[n]!, {n, 1, 20}], 10, 100][[1]] (* Amiram Eldar, Nov 25 2020 *)
  • PARI
    default(realprecision,100); sum(n=1,100,1/(prime(n)!),0.)
    
  • PARI
    prec=exp(lambertw(default(realprecision)/exp(1)*log(10))+1)+9; P=s=.5;p=2;forprime(q=3,prec,P/=prod(i=p+1,q,i);s+=P;p=q); s \\ Charles R Greathouse IV, Nov 05 2013

Formula

Equals Sum_{k>0} A010051(k)/k!. - R. J. Cano, Jan 25 2017
From Amiram Eldar, Nov 25 2020: (Start)
Equals Sum_{k>=1} 1/A039716(k).
Equals Sum_{k>=1} pi(k)/((k+1)*(k-1)!), where pi = A000720. (End)

A177946 a(n) = prime(n)! / n!.

Original entry on oeis.org

2, 3, 20, 210, 332640, 8648640, 70572902400, 3016991577600, 71241227785728000, 2436552577639909048320000, 205999445200465037721600000, 28734252852655074735274328064000000, 5372155913332392772506888374845440000000
Offset: 1

Views

Author

Reinhard Zumkeller, May 15 2010

Keywords

Crossrefs

Programs

Formula

a(n) = A039716(n)/A000142(n).

Extensions

More terms from Michel Marcus, Sep 08 2015

A261997 a(n) = prime(n)! - prime(n!).

Original entry on oeis.org

0, 3, 107, 4951, 39916141, 6227015357, 355687428046967, 121645100408347963, 25852016738884971417571, 8841761993739701954543554805353, 8222838654177922817725562105174617
Offset: 1

Views

Author

Altug Alkan, Sep 08 2015

Keywords

Comments

a(n) is prime for n = 2, 3, 4, 5, 7.

Examples

			For n=2, a(n) = prime(n)! - prime(n!) = prime(2)! - prime(2!) = 3.
		

Crossrefs

Programs

  • Mathematica
    Array[Prime[#]! - Prime[#!] &, {11}] (* Michael De Vlieger, Sep 08 2015 *)
  • PARI
    vector(11, n, prime(n)! - prime(n!))

Formula

a(n) = A039716(n) - A062439(n).
log a(n) ~ n log^2 n. - Charles R Greathouse IV, Sep 08 2015

A305618 Expansion of e.g.f. log(1 + Sum_{k>=1} x^prime(k)/prime(k)!).

Original entry on oeis.org

0, 1, 1, -3, -9, 20, 190, -126, -6280, -10326, 293041, 1519320, -16985045, -194560444, 1013712777, 27317463952, -19210030599, -4305097718760, -17733269020226, 743855089334604, 7868686621862292, -132351392654695270, -2854492900112993039, 20150897206881256464
Offset: 1

Views

Author

Ilya Gutkovskiy, Jun 06 2018

Keywords

Comments

Logarithmic transform of A010051.

Examples

			E.g.f.: A(x) = x^2/2! + x^3/3! - 3*x^4/4! - 9*x^5/5! + 20*x^6/6! + ...
exp(A(x)) = 1 + x^2/2! + x^3/3! + x^5/5! + x^7/7! + ... + x^A000040(k)/A039716(k) + ...
exp(exp(A(x))-1) = 1 + x^2/2! + x^3/3! + 3*x^4/4! + 11*x^5/5! + ... + A190476(k)*x^k/k! + ...
		

Crossrefs

Programs

  • Maple
    a:= proc(n) option remember; (t-> `if`(n=0, 0, t(n)-add(a(j)*t(n-j)*
           j*binomial(n, j), j=1..n-1)/n))(i-> `if`(isprime(i), 1, 0))
        end:
    seq(a(n), n=1..25);  # Alois P. Heinz, Dec 04 2018
  • Mathematica
    nmax = 24; Rest[CoefficientList[Series[Log[1 + Sum[x^Prime[k]/Prime[k]!, {k, 1, nmax}]], {x, 0, nmax}], x] Range[0, nmax]!]
    a[n_] := a[n] = Boole[PrimeQ[n]] - Sum[k Binomial[n, k] Boole[PrimeQ[n - k]] a[k], {k, 1, n - 1}]/n; a[0] = 0; Table[a[n], {n, 24}]

A055929 Euler totient function of the factorial of prime(n).

Original entry on oeis.org

1, 2, 32, 1152, 8294400, 1194393600, 64210599936000, 20804234379264000, 4229084764616785920000, 1396531754239566739931136000000, 1256878578815610065938022400000000, 2046959290878571310305421983481856000000000, 4853749870531268290996216607232176947200000000000
Offset: 1

Views

Author

Labos Elemer, Jul 17 2000

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := EulerPhi[Prime[n]!]; Array[a, 12] (* Amiram Eldar, Jun 03 2024 *)
  • PARI
    a(n) = eulerphi(prime(n)!); \\ Amiram Eldar, Jun 03 2024

Formula

a(n) = phi(prime(n)!) = A000010(A039716(n)) = A048855(prime(n)).

Extensions

a(12)-a(13) from Amiram Eldar, Jun 03 2024

A055930 Number of distinct prime factors of totient of (n-th prime)!.

Original entry on oeis.org

0, 1, 1, 2, 3, 3, 4, 4, 5, 6, 6, 7, 8, 8, 9, 9, 10, 10, 11, 11, 11, 12, 13, 14, 15, 15, 15, 16, 16, 16, 18, 18, 19, 19, 21, 21, 21, 22, 23, 23, 24, 24, 24, 24, 25, 25, 27, 29, 30, 30, 30, 30, 30, 30, 31, 32, 32, 32, 33, 34, 34, 34, 36, 36, 36, 37, 38, 39, 40, 40, 40, 41, 42, 42
Offset: 1

Views

Author

Labos Elemer, Jul 17 2000

Keywords

Crossrefs

Programs

  • Mathematica
    Table[PrimeNu[EulerPhi[Prime[n]!]], {n, 1, 50}] (* G. C. Greubel, May 13 2017 *)
  • PARI
    for(n=1,50, print1(omega(eulerphi(prime(n)!)) , ", ")) \\ G. C. Greubel, May 13 2017

Formula

a(n) = A001221(A055929(n)).

A114574 a(n) = p*p! where p = prime(n).

Original entry on oeis.org

4, 18, 600, 35280, 439084800, 80951270400, 6046686277632000, 2311256907767808000, 594596384994354462720000, 256411097818451356681764864000000, 254907998279515607349492449280000000, 509258864375374766713691244518493388800000000, 1371553591139716091434972544191070818271232000000000
Offset: 1

Views

Author

L. Shawnee Cook (shawneecook(AT)gmail.com), Feb 17 2006

Keywords

Examples

			2 * 2! = 4, 3 * 3! = 18, 5 * 5! = 600.
		

References

  • Originally published on Nov 09 2004 by indiejade(AT)gmail.com

Crossrefs

Cf. A000040 (prime(n)), A039716 (prime(n)!).

Programs

  • Magma
    [p*Factorial(p): p in PrimesUpTo(50)]; // Vincenzo Librandi, Jun 09 2013
    
  • Mathematica
    Array[Prime[#] Prime[#]! &, 13] (* Michael De Vlieger, Aug 04 2015 *)
    #*#!&/@Prime[Range[15]] (* Harvey P. Dale, Sep 21 2024 *)
  • Python
    from sympy import factorial, prime
    def a(n): p = prime(n); return p * factorial(p)
    print([a(n) for n in range(1, 14)]) # Michael S. Branicky, Apr 18 2021

Formula

a(n) = A000040(n)*A039716(n). - Michel Marcus, Feb 08 2015
a(n) = A001563(A000040(n)). - Michel Marcus, Aug 04 2015

A131492 Numbers n such that the sum of the Carmichael lambda functions of the divisors is a proper divisor of n.

Original entry on oeis.org

140, 189, 378, 1375, 2750, 2775, 2997, 4524, 5550, 5661, 5994, 6375, 11253, 11322, 12750, 13416, 13505, 22506, 25925, 27010, 27511, 30613, 32208, 32513, 32760, 45917, 49665, 49959, 51850, 55022, 61061, 61226, 65026, 67488, 91834, 93605
Offset: 1

Views

Author

R. J. Mathar, Jul 29 2007

Keywords

Comments

The auxiliary sequence defined by b(n)=sum_{d|n} A002322(d) starts 1,2,3,4,5,6,7,6,9,10,11,10,13,14,11,10,17,18,19,16,...
The auxiliary sequence is A141258. [Reinhard Zumkeller, Feb 17 2012]

Crossrefs

Programs

  • Mathematica
    Select[ Range[100000], Divisible[#, s = Total[ CarmichaelLambda /@ Divisors[#]]] && s < # &] (* Jean-François Alcover, Jun 24 2013 *)
  • PARI
    lambda(p,alpha)={ if(p>=3 || alpha<=2, return(p^(alpha-1)*(p-1)), return(2^(alpha-2)) ; ) ; } A002322(n)={ local(pf,rmax,resul) ; if(n==1, return(1) ) ; pf=factor(n) ; rmax=matsize(pf)[1] ; resul= lambda(pf[1,1],pf[1,2]) ; for(r=2,rmax, resul=lcm(resul,lambda(pf[r,1],pf[r,2])) ; ) ; return(resul) ; } b(n)={ sumdiv(n,d,A002322(d)) ; } { for(n=1,120000, l=b(n) ; if( l != 1 && l != n && n%l==0, print1(n,",") ) ; ) ; }

Formula

n such that (sum_{d|n} A002322(d)) | n.
Previous Showing 11-20 of 40 results. Next