cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-40 of 53 results. Next

A193868 Even central polygonal numbers.

Original entry on oeis.org

2, 4, 16, 22, 46, 56, 92, 106, 154, 172, 232, 254, 326, 352, 436, 466, 562, 596, 704, 742, 862, 904, 1036, 1082, 1226, 1276, 1432, 1486, 1654, 1712, 1892, 1954, 2146, 2212, 2416, 2486, 2702, 2776, 3004, 3082, 3322, 3404, 3656, 3742, 4006, 4096, 4372
Offset: 1

Views

Author

Omar E. Pol, Aug 15 2011

Keywords

Comments

Odd triangular numbers plus 1.

Crossrefs

Programs

  • Magma
    [1+((2*n-1)*(2*n-1-(-1)^n)/2): n in [1..50]]; // Vincenzo Librandi, Aug 18 2011
    
  • Mathematica
    Table[(3 + (-1)^n - 2 (2 + (-1)^n) n + 4 n^2)/2, {n, 50}] (* or *)
    Select[PolygonalNumber@ Range@ 100, OddQ] + 1 (* Version 10.4, or *)
    Table[If[EvenQ@ n, 2 n^2 - 3 n + 2, 2 n^2 - n + 1], {n, 50}] (* or *)
    Rest@ CoefficientList[Series[-2 x (1 + x + 4 x^2 + x^3 + x^4)/((1 + x)^2 (x - 1)^3), {x, 0, 50}], x] (* Michael De Vlieger, Jun 30 2016 *)
    LinearRecurrence[{1,2,-2,-1,1},{2,4,16,22,46},50] (* Harvey P. Dale, Sep 13 2020 *)
  • PARI
    a(n)=(2*n-1)*(2*n-1-(-1)^n)/2+1 \\ Charles R Greathouse IV, Jun 11 2015
    
  • PARI
    Vec(2*x*(1+x+4*x^2+x^3+x^4)/((1-x)^3*(1+x)^2) + O(x^100)) \\ Colin Barker, Jan 27 2016

Formula

a(n) = A000124(A042963(n-1)).
a(n) = 1 + A014493(n).
a(n) = 2*A174114(n).
G.f.: -2*x*(1+x+4*x^2+x^3+x^4) / ( (1+x)^2*(x-1)^3 ). - R. J. Mathar, Aug 25 2011
From Colin Barker, Jan 27 2016: (Start)
a(n) = (3+(-1)^n-2*(2+(-1)^n)*n+4*n^2)/2.
a(n) = 2*n^2-3*n+2 for n even.
a(n) = 2*n^2-n+1 for n odd. (End)
Sum_{n>=1} 1/a(n) = 2*Pi*sinh(sqrt(7)*Pi/4)/(sqrt(7)*(sqrt(2) + 2*cosh(sqrt(7)*Pi/4))). - Amiram Eldar, May 11 2025

A284307 Permutation of the natural numbers partitioned into quadruples [4k-3, 4k, 4k-2, 4k-1], k > 0.

Original entry on oeis.org

1, 4, 2, 3, 5, 8, 6, 7, 9, 12, 10, 11, 13, 16, 14, 15, 17, 20, 18, 19, 21, 24, 22, 23, 25, 28, 26, 27, 29, 32, 30, 31, 33, 36, 34, 35, 37, 40, 38, 39, 41, 44, 42, 43, 45, 48, 46, 47, 49, 52, 50, 51, 53, 56, 54, 55, 57, 60, 58, 59, 61, 64, 62, 63, 65, 68, 66, 67
Offset: 1

Views

Author

Guenther Schrack, Mar 24 2017

Keywords

Comments

Partition the natural number sequence into quadruples starting with (1, 2, 3, 4); swap the third and fourth element, then swap the second and third element; repeat for all quadruples.

Crossrefs

Inverse: A056699.
Subsequences:
elements with odd index: A042963(n), n > 0
elements with even index: A014601(A103889(n)), n > 0
odd elements: A005408(n-1), n > 0
indices of odd elements: A042948(n), n > 0
even elements: 2*A103889(n), n > 0
indices of even elements: A042964(n), n > 0
Sequence of fixed points: A016813(n-1), n > 0
Every fourth element starting at:
n=1: a(4n-3) = 4n-3 = A016813(n-1), n > 0
n=2: a(4n-2) = 4n = A008586(n), n > 0
n=3: a(4n-1) = 4n-2 = A016825(n-1), n > 0
n=4: a(4n) = 4n-1 = A004767(n-1), n > 0
Difference between pairs of elements:
a(2n+1)-a(2n-1) = A010684(n-1), n > 0
Compositions:
a(n) = A133256(A116966(n-1)), n > 0
a(A042948(n)) = A005408(n-1), n > 0
A067060(a(n)) = A092486(n), n > 0

Programs

  • MATLAB
    a = [1 4 2 3];
    max = (specify);
    for n = 5:max
       a(n) = a(n-4) + 4;
    end;
    
  • Mathematica
    Table[n + ((-1)^n - (-1)^(n (n - 1)/2) (1 + 2 (-1)^n))/2, {n, 68}] (* Michael De Vlieger, Mar 28 2017 *)
    LinearRecurrence[{1,0,0,1,-1},{1,4,2,3,5},70] (* or *) {#[[1]],#[[4]], #[[2]],#[[3]]}&/@Partition[Range[70],4]//Flatten(* Harvey P. Dale, Sep 27 2017 *)
  • PARI
    for(n=1, 68, print1(n + ((-1)^n - (-1)^(n*(n - 1)/2)*(1 + 2*(-1)^n))/2,", ")) \\ Indranil Ghosh, Mar 29 2017

Formula

a(1)=1, a(2)=4, a(3)=2, a(4)=3, a(n) = a(n-4) + 4, n > 4.
O.g.f.: (x^4 + x^3 - 2*x^2 + 3x - 1)/(x^5 - x^4 - x + 1).
a(n) = n + ((-1)^n - (-1)^(n*(n-1)/2)*(1 + 2*(-1)^n))/2.
a(n) = n + (-1)^n*(1 - (-1)^(n*(n-1)/2) - (i^n - (-i)^n))/2.
Linear recurrence: a(n) = a(n-1) + a(n-4) - a(n-5), n > 5.
First differences, periodic: (3, -2, 1, 2), repeat.
a(n) = (2*n - 3*cos(n*Pi/2) + cos(n*Pi) + sin(n*Pi/2))/2. - Wesley Ivan Hurt, Apr 01 2017

A209765 Triangle of coefficients of polynomials u(n,x) jointly generated with A209766; see the Formula section.

Original entry on oeis.org

1, 1, 2, 1, 5, 5, 1, 5, 15, 12, 1, 5, 21, 45, 29, 1, 5, 21, 77, 129, 70, 1, 5, 21, 89, 265, 361, 169, 1, 5, 21, 89, 353, 865, 991, 408, 1, 5, 21, 89, 377, 1325, 2717, 2681, 985, 1, 5, 21, 89, 377, 1549, 4733, 8281, 7169, 2378, 1, 5, 21, 89, 377, 1597, 6125
Offset: 1

Views

Author

Clark Kimberling, Mar 14 2012

Keywords

Comments

Limiting row: F(2+3k), where F=A000045 (Fibonacci numbers)
Coefficient of x^n in u(n,x): 1,2,5,12,.... A000129(n)
Row sums: 1,3,11,33,101,303,911,2733,..... A081250
Alternating row sums: 1,-1,1,-1,1,-1,,..... A033999
For a discussion and guide to related arrays, see A208510.

Examples

			First five rows:
1
1...2
1...5...5
1...5...15...12
1...5...21...45...29
First three polynomials u(n,x): 1, 1 + 2x, 1 + 5x + 5x^2.
		

Crossrefs

Programs

  • Mathematica
    u[1, x_] := 1; v[1, x_] := 1; z = 16;
    u[n_, x_] := x*u[n - 1, x] + (x + 1)*v[n - 1, x];
    v[n_, x_] := 2 x*u[n - 1, x] + x*v[n - 1, x] + 1;
    Table[Expand[u[n, x]], {n, 1, z/2}]
    Table[Expand[v[n, x]], {n, 1, z/2}]
    cu = Table[CoefficientList[u[n, x], x], {n, 1, z}];
    TableForm[cu]
    Flatten[%]    (* A209765 *)
    Table[Expand[v[n, x]], {n, 1, z}]
    cv = Table[CoefficientList[v[n, x], x], {n, 1, z}];
    TableForm[cv]
    Flatten[%]    (* A209766 *)
    Table[u[n, x] /. x -> 1, {n, 1, z}]  (* A081250 *)
    Table[v[n, x] /. x -> 1, {n, 1, z}]  (* A060925 *)
    Table[u[n, x] /. x -> -1, {n, 1, z}] (* A033999 *)
    Table[v[n, x] /. x -> -1, {n, 1, z}] (* A042963 signed *)

Formula

u(n,x)=x*u(n-1,x)+(x+1)*v(n-1,x),
v(n,x)=2x*u(n-1,x)+x*v(n-1,x)+1,
where u(1,x)=1, v(1,x)=1.

A209766 Triangle of coefficients of polynomials v(n,x) jointly generated with A209765; see the Formula section.

Original entry on oeis.org

1, 1, 3, 1, 3, 7, 1, 3, 13, 17, 1, 3, 13, 43, 41, 1, 3, 13, 55, 133, 99, 1, 3, 13, 55, 209, 391, 239, 1, 3, 13, 55, 233, 739, 1113, 577, 1, 3, 13, 55, 233, 939, 2469, 3095, 1393, 1, 3, 13, 55, 233, 987, 3589, 7903, 8457, 3363, 1, 3, 13, 55, 233, 987, 4085
Offset: 1

Views

Author

Clark Kimberling, Mar 14 2012

Keywords

Comments

Limiting row: F(1+3k), where F=A000045 (Fibonacci numbers)
Coefficient of x^n in u(n,x): A001333(n)
Row sums: 1,4,11,34,101,304,... A060925.
For a discussion and guide to related arrays, see A208510.

Examples

			First five rows:
1
1...3
1...3...7
1...3...13...17
1...3...13...43...41
First three polynomials v(n,x): 1, 1 + 3x , 1 + 3x + 7x^2.
		

Crossrefs

Programs

  • Mathematica
    u[1, x_] := 1; v[1, x_] := 1; z = 16;
    u[n_, x_] := x*u[n - 1, x] + (x + 1)*v[n - 1, x];
    v[n_, x_] := 2 x*u[n - 1, x] + x*v[n - 1, x] + 1;
    Table[Expand[u[n, x]], {n, 1, z/2}]
    Table[Expand[v[n, x]], {n, 1, z/2}]
    cu = Table[CoefficientList[u[n, x], x], {n, 1, z}];
    TableForm[cu]
    Flatten[%]    (* A209765 *)
    Table[Expand[v[n, x]], {n, 1, z}]
    cv = Table[CoefficientList[v[n, x], x], {n, 1, z}];
    TableForm[cv]
    Flatten[%]    (* A209766 *)
    Table[u[n, x] /. x -> 1, {n, 1, z}]  (* A081250 *)
    Table[v[n, x] /. x -> 1, {n, 1, z}]  (* A060925 *)
    Table[u[n, x] /. x -> -1, {n, 1, z}] (* A033999 *)
    Table[v[n, x] /. x -> -1, {n, 1, z}] (* A042963 signed *)

Formula

u(n,x)=x*u(n-1,x)+(x+1)*v(n-1,x),
v(n,x)=2x*u(n-1,x)+x*v(n-1,x)+1,
where u(1,x)=1, v(1,x)=1.

A292576 Permutation of the natural numbers partitioned into quadruples [4k-1, 4k-3, 4k-2, 4k], k > 0.

Original entry on oeis.org

3, 1, 2, 4, 7, 5, 6, 8, 11, 9, 10, 12, 15, 13, 14, 16, 19, 17, 18, 20, 23, 21, 22, 24, 27, 25, 26, 28, 31, 29, 30, 32, 35, 33, 34, 36, 39, 37, 38, 40, 43, 41, 42, 44, 47, 45, 46, 48, 51, 49, 50, 52, 55, 53, 54, 56, 59, 57, 58, 60, 63, 61, 62
Offset: 1

Views

Author

Guenther Schrack, Sep 19 2017

Keywords

Comments

Partition the natural number sequence into quadruples starting with (1,2,3,4); swap the second and third elements, then swap the first and the second element; repeat for all quadruples.

Crossrefs

Inverse: A056699(n+1) - 1 for n > 0.
Sequence of fixed points: A008586(n) for n > 0.
Subsequences:
elements with odd index: A042964(A103889(n)) for n > 0.
elements with even index: A042948(n) for n > 0.
odd elements: A166519(n) for n>0.
indices of odd elements: A042963(n) for n > 0.
even elements: A005843(n) for n>0.
indices of even elements: A014601(n) for n > 0.
Sum of pairs of elements:
a(n+2) + a(n) = A163980(n+1) = A168277(n+2) for n > 0.
Difference between pairs of elements:
a(n+2) - a(n) = (-1)^A011765(n+3)*A091084(n+1) for n > 0.
Compound relations:
a(n) = A284307(n+1) - 1 for n > 0.
a(n+2) - 2*a(n+1) + a(n) = (-1)^A011765(n)*A132400(n+1) for n > 0.
Compositions:
a(n) = A116966(A080412(n)) for n > 0.
a(A284307(n)) = A256008(n) for n > 0.
a(A042963(n)) = A166519(n-1) for n > 0.
A256008(a(n)) = A056699(n) for n > 0.

Programs

  • MATLAB
    a = [3 1 2 4]; % Generate b-file
    max = 10000;
    for n := 5:max
       a(n) = a(n-4) + 4;
    end;
    
  • PARI
    for(n=1, 10000, print1(n + ((-1)^(n*(n-1)/2)*(2 - (-1)^n) - (-1)^n)/2, ", "))

Formula

a(1)=3, a(2)=1, a(3)=2, a(4)=4, a(n) = a(n-4) + 4 for n > 4.
O.g.f.: (2*x^3 + x^2 - 2*x + 3)/(x^5 - x^4 - x + 1).
a(n) = n + ((-1)^(n*(n-1)/2)*(2-(-1)^n) - (-1)^n)/2.
a(n) = n + (cos(n*Pi/2) - cos(n*Pi) + 3*sin(n*Pi/2))/2.
a(n) = n + n mod 2 + (ceiling(n/2)) mod 2 - 2*(floor(n/2) mod 2).
Linear recurrence: a(n) = a(n-1) + a(n-4) - a(n-5) for n>5.
First Differences, periodic: (-2, 1, 2, 3), repeat; also (-1)^A130569(n)*A068073(n+2) for n > 0.

A301507 Expansion of Product_{k>=0} (1 + x^(4*k+1))*(1 + x^(4*k+2)).

Original entry on oeis.org

1, 1, 1, 1, 0, 1, 2, 2, 2, 2, 2, 3, 3, 3, 4, 5, 6, 6, 6, 7, 8, 9, 10, 11, 13, 14, 14, 16, 18, 20, 23, 24, 27, 30, 31, 34, 37, 41, 46, 49, 53, 58, 62, 67, 73, 80, 88, 94, 101, 109, 117, 127, 136, 147, 161, 172, 184, 198, 211, 228, 245, 262, 284, 304, 324, 347, 370, 397, 425, 454, 488
Offset: 0

Views

Author

Ilya Gutkovskiy, Mar 22 2018

Keywords

Comments

Number of partitions of n into distinct parts congruent to 1 or 2 mod 4.

Examples

			a(11) = 3 because we have [10, 1], [9, 2] and [6, 5].
		

Crossrefs

Programs

  • Mathematica
    nmax = 70; CoefficientList[Series[Product[(1 + x^(4 k + 1)) (1 + x^(4 k + 2)), {k, 0, nmax}], {x, 0, nmax}], x]
    nmax = 70; CoefficientList[Series[QPochhammer[-x, x^4] QPochhammer[-x^2, x^4], {x, 0, nmax}], x]
    nmax = 70; CoefficientList[Series[Product[(1 + Boole[MemberQ[{1, 2}, Mod[k, 4]]] x^k), {k, 1, nmax}], {x, 0, nmax}], x]

Formula

G.f.: Product_{k>=1} (1 + x^A042963(k)).
a(n) ~ exp(Pi*sqrt(n/6)) / (2^(3/2)*3^(1/4)*n^(3/4)). - Vaclav Kotesovec, Mar 23 2018

A341839 Square array T(n, k), n, k >= 0, read by antidiagonals; for any number m with runs in binary expansion (r_1, ..., r_j), let R(m) = {r_1 + ... + r_j, r_2 + ... + r_j, ..., r_j}; T(n, k) is the unique number t such that R(t) is the union of R(n) and of R(k).

Original entry on oeis.org

0, 1, 1, 2, 1, 2, 3, 2, 2, 3, 4, 2, 2, 2, 4, 5, 5, 2, 2, 5, 5, 6, 5, 5, 3, 5, 5, 6, 7, 6, 5, 4, 4, 5, 6, 7, 8, 6, 5, 5, 4, 5, 5, 6, 8, 9, 9, 5, 5, 5, 5, 5, 5, 9, 9, 10, 9, 10, 4, 5, 5, 5, 4, 10, 9, 10, 11, 10, 10, 11, 4, 5, 5, 4, 11, 10, 10, 11, 12, 10, 10, 10, 11, 5, 6, 5, 11, 10, 10, 10, 12
Offset: 0

Views

Author

Rémy Sigrist, Feb 21 2021

Keywords

Comments

For any m > 0, R(m) contains the partial sums of the m-th row of A227736; by convention, R(0) = {}.
The underlying idea is to break in an optimal way the runs in binary expansions of n and of k so that they match, hence the relationship with A003188.

Examples

			Array T(n, k) begins:
  n\k|    0   1   2   3   4   5   6   7   8   9  10  11  12  13  14  15
  ---+-----------------------------------------------------------------
    0|    0   1   2   3   4   5   6   7   8   9  10  11  12  13  14  15
    1|    1   1   2   2   5   5   6   6   9   9  10  10  13  13  14  14
    2|    2   2   2   2   5   5   5   5  10  10  10  10  13  13  13  13
    3|    3   2   2   3   4   5   5   4  11  10  10  11  12  13  13  12
    4|    4   5   5   4   4   5   5   4  11  10  10  11  11  10  10  11
    5|    5   5   5   5   5   5   5   5  10  10  10  10  10  10  10  10
    6|    6   6   5   5   5   5   6   6   9   9  10  10  10  10   9   9
    7|    7   6   5   4   4   5   6   7   8   9  10  11  11  10   9   8
    8|    8   9  10  11  11  10   9   8   8   9  10  11  11  10   9   8
    9|    9   9  10  10  10  10   9   9   9   9  10  10  10  10   9   9
   10|   10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10
   11|   11  10  10  11  11  10  10  11  11  10  10  11  11  10  10  11
   12|   12  13  13  12  11  10  10  11  11  10  10  11  12  13  13  12
   13|   13  13  13  13  10  10  10  10  10  10  10  10  13  13  13  13
   14|   14  14  13  13  10  10   9   9   9   9  10  10  13  13  14  14
   15|   15  14  13  12  11  10   9   8   8   9  10  11  12  13  14  15
		

Crossrefs

Programs

  • PARI
    T(n,k) = { my (r=[], v=0); while (n||k, my (w=min(valuation(n+n%2,2), valuation(k+k%2,2))); r=concat(w,r); n\=2^w; k\=2^w); for (k=1, #r, v=(v+k%2)*2^r[k]-k%2); v }

Formula

T(n, k) = T(k, n)
T(m, T(n, k)) = T(T(m, n), k).
T(n, n) = n.
T(n, 0) = 0.
A070939(T(n, k)) = max(A070939(n), A070939(k)).
A003188(T(n, k)) = A003188(n) OR A003188(k) (where OR denotes the bitwise OR operator).
T(n, 1) = A042963(ceiling((n+1)/2)).

A350396 Numbers m such that there are two or more terms with the largest coefficient in Product_{k=1..m} (1 + x^k).

Original entry on oeis.org

1, 2, 4, 5, 6, 7, 9, 10, 13, 14, 17, 18, 21, 22, 25, 26, 29, 30, 33, 34, 37, 38, 41, 42, 45, 46, 49, 50, 53, 54, 57, 58, 61, 62, 65, 66, 69, 70, 73, 74, 77, 78, 81, 82, 85, 86, 89, 90, 93, 94, 97, 98, 101, 102, 105, 106, 109, 110, 113, 114, 117, 118, 121, 122, 125, 126, 129, 130, 133, 134, 137, 138, 141, 142, 145, 146, 149, 150, 153, 154, 157, 158, 161, 162, 165, 166, 169, 170, 173, 174, 177, 178
Offset: 1

Views

Author

Max Alekseyev, Dec 28 2021

Keywords

Comments

Numbers m such that A350393(m) < A350394(m).
Apparently, a(n) = A042963(n-2) for n >= 7. - Hugo Pfoertner, Dec 30 2021

Crossrefs

Complement of A350395.
Cf. A025591 (largest coefficient), A350393, A350394.
Cf. A042963.

A128622 Triangle T(n, k) = A128064(unsigned) * A128174, read by rows.

Original entry on oeis.org

1, 1, 2, 3, 2, 3, 3, 4, 3, 4, 5, 4, 5, 4, 5, 5, 6, 5, 6, 5, 6, 7, 6, 7, 6, 7, 6, 7, 7, 8, 7, 8, 7, 8, 7, 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 9, 10, 9, 10, 9, 10, 9, 10, 9, 10, 11, 10, 11, 10, 11, 10, 11, 10, 11, 10, 11, 11, 12, 11, 12, 11, 12, 11, 12, 11, 12, 11, 12
Offset: 1

Views

Author

Gary W. Adamson, Mar 14 2007

Keywords

Examples

			First few rows of the triangle are:
  1;
  1, 2;
  3, 2, 3;
  3, 4, 3, 4;
  5, 4, 5, 4, 5;
  5, 6, 5, 6, 5, 6;
  7, 6, 7, 6, 7, 6, 7;
  ...
		

Crossrefs

Cf. A000326 (diagonal sums), A014848 (row sums), A319556 (alternating row sums).

Programs

  • Magma
    [n - ((n+k) mod 2): k in [1..n], n in [1..16]]; // G. C. Greubel, Mar 14 2024
    
  • Mathematica
    Table[n - Mod[n+k,2], {n,16}, {k,n}]//Flatten (* G. C. Greubel, Mar 14 2024 *)
  • SageMath
    flatten([[n - ((n+k)%2) for k in range(1,n+1)] for n in range(1,16)]) # G. C. Greubel, Mar 14 2024

Formula

T(n, k) = abs(A128064(n,k) * A128174(n, k), as infinite lower triangular matrices.
Sum_{k=1..n} T(n, k) = A014848(n) (row sums).
From G. C. Greubel, Mar 14 2024: (Start)
T(n, k) = n - (1 - (-1)^(n+k))/2 = n - (n+k mod 2).
T(n, 1) = A109613(n+1).
T(n, n) = A000027(n).
T(2*n-1, n) = A042963(n).
T(3*n-1, n) = A016777(n+1).
T(4*n-3, n) = A047461(n).
Sum_{k=1..n} (-1)^(k-1)*T(n, k) = A319556(n).
Sum_{k=1..floor((n+1)/2)} T(n-k+1, k) = A000326(floor((n+1)/2)).
Sum_{k=1..floor((n+1)/2)} (-1)^(k-1)*T(n-k+1, k) = A123684(floor((n+1)/2)). (End)

Extensions

More terms added by G. C. Greubel, Mar 14 2024

A237989 Numbers m such that the numbers of primes, even positive integers and odd positive integers less than or equal to m are all odd.

Original entry on oeis.org

2, 6, 18, 26, 34, 42, 50, 70, 74, 78, 86, 98, 106, 110, 130, 138, 150, 158, 162, 170, 198, 214, 218, 222, 234, 238, 242, 246, 250, 258, 262, 270, 278, 286, 290, 310, 314, 334, 354, 358, 370, 382, 390, 394, 402, 406, 442, 450, 454, 462, 470, 474, 478, 490, 502
Offset: 1

Views

Author

Ivan N. Ianakiev, Feb 16 2014

Keywords

Examples

			A cubic die whose faces are marked with the numbers from 1 to 6 has odd number of sides marked with prime numbers (2, 3 and 5), even integers (2, 4 and 6) and odd integers (1, 3 and 5). Therefore, 6 is in the sequence.
		

Crossrefs

Programs

  • Mathematica
    Select[Range[2, 1000, 4], OddQ[PrimePi[#]] &] (* Paolo Xausa, Jun 24 2024 *)
  • PARI
    isok(n) = (primepi(n) % 2) && ((n % 4) == 2); \\ Michel Marcus, Mar 12 2014

Formula

Intersection of A042963 (odd number of odd numbers), A042964 (odd number of even numbers), A057812 (odd number of primes). - Michel Marcus, Feb 26 2014
Previous Showing 31-40 of 53 results. Next