cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 41-50 of 73 results. Next

A140678 a(n) = n*(3*n + 10).

Original entry on oeis.org

0, 13, 32, 57, 88, 125, 168, 217, 272, 333, 400, 473, 552, 637, 728, 825, 928, 1037, 1152, 1273, 1400, 1533, 1672, 1817, 1968, 2125, 2288, 2457, 2632, 2813, 3000, 3193, 3392, 3597, 3808, 4025, 4248, 4477, 4712, 4953, 5200, 5453, 5712
Offset: 0

Views

Author

Omar E. Pol, May 22 2008

Keywords

Crossrefs

Programs

  • Mathematica
    Table[n (3 n + 10), {n, 0, 50}] (* or *) LinearRecurrence[{3, -3, 1}, {0, 13, 32}, 50] (* Harvey P. Dale, Jun 05 2012 *)
  • PARI
    a(n)=n*(3*n+10) \\ Charles R Greathouse IV, Oct 07 2015

Formula

a(n) = 3*n^2 + 10*n.
a(n) = 6*n + a(n-1) + 7, with a(0)=0. - Vincenzo Librandi, Aug 03 2010
G.f.: x*(13 - 7*x)/(1 - x)^3. - Arkadiusz Wesolowski, Dec 24 2011
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3), with a(0)=0, a(1)=13, a(2)=32. - Harvey P. Dale, Jun 05 2012
E.g.f.: (3*x^2 + 13*x)*exp(x). - G. C. Greubel, Jul 20 2017

A211013 Second 13-gonal numbers: a(n) = n*(11*n+9)/2.

Original entry on oeis.org

0, 10, 31, 63, 106, 160, 225, 301, 388, 486, 595, 715, 846, 988, 1141, 1305, 1480, 1666, 1863, 2071, 2290, 2520, 2761, 3013, 3276, 3550, 3835, 4131, 4438, 4756, 5085, 5425, 5776, 6138, 6511, 6895, 7290, 7696, 8113, 8541, 8980, 9430, 9891, 10363
Offset: 0

Views

Author

Omar E. Pol, Aug 04 2012

Keywords

Comments

Sequence found by reading the line from 0, in the direction 0, 31... and the line from 10, in the direction 10, 63,..., in the square spiral whose vertices are the generalized 13-gonal numbers A195313.

Crossrefs

Bisection of A195313.
Second k-gonal numbers (k=5..14): A005449, A014105, A147875, A045944, A179986, A033954, A062728, A135705, this sequence, A211014.
Cf. A051865.

Programs

Formula

G.f.: x*(10+x)/(1-x)^3. - Philippe Deléham, Mar 27 2013
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) with a(0) = 0, a(1) = 10, a(2) = 31. - Philippe Deléham, Mar 27 2013
a(n) = A051865(n) + 9n = A180223(n) + 8n = A022268(n) + 5n = A022269(n) + 4n = A152740(n) - n. - Philippe Deléham, Mar 27 2013
a(n) = A218530(11n+9). - Philippe Deléham, Mar 27 2013
E.g.f.: x*(20 + 11*x)*exp(x)/2. - G. C. Greubel, Jul 04 2019

A307011 First coordinate in a redundant hexagonal coordinate system of the points of a counterclockwise spiral on an hexagonal grid. Second and third coordinates are given in A307012 and A345978.

Original entry on oeis.org

0, 1, 0, -1, -1, 0, 1, 2, 2, 1, 0, -1, -2, -2, -2, -1, 0, 1, 2, 3, 3, 3, 2, 1, 0, -1, -2, -3, -3, -3, -3, -2, -1, 0, 1, 2, 3, 4, 4, 4, 4, 3, 2, 1, 0, -1, -2, -3, -4, -4, -4, -4, -4, -3, -2, -1, 0, 1, 2, 3, 4, 5, 5, 5, 5, 5, 4, 3, 2, 1, 0, -1, -2, -3, -4, -5
Offset: 0

Views

Author

Hugo Pfoertner, Mar 19 2019

Keywords

Comments

From Peter Munn, Jul 22 2021: (Start)
The points of the spiral are equally the points of a hexagonal lattice, the points of an isometric (triangular) grid and the center points of the cells of a honeycomb (regular hexagonal tiling or grid). The coordinate system can be described using 3 axes that pass through spiral point 0 and one of points 1, 2 or 3. Along each axis, one of the coordinates is 0.
a(n) is the signed distance from spiral point n to the axis that passes through point 2. The distance is measured along either of the lines through point n that are parallel to one of the other 2 axes and the sign is such that point 1 has positive distance.
This coordinate can be paired with either of the other coordinates to form oblique coordinates as described in A307012. Alternatively, all 3 coordinates can be used together, symmetrically, as described in A345978.
There is a negated variant of the 3rd coordinate, which is the conventional sense of this coordinate for specifying (with the 2nd coordinate) the Eisenstein integers that can be the points of the spiral when it is embedded in the complex plane. See A307013.
(End)

Crossrefs

Numbers on the spokes of the spiral: A000567, A028896, A033428, A045944, A049450, A049451.
Positions on the spiral that correspond to Eisenstein primes: A345435.

Programs

  • PARI
    r=-1;d=-1;print1(m=0,", ");for(k=0,8,for(j=1,r,print1(s,", "));if(k%2,,m++;r++);for(j=-m,m+1,if(d*j>=-m,print1(s=d*j,", ")));d=-d)

Extensions

Name revised by Peter Munn, Jul 08 2021

A140679 a(n) = n*(3*n+14).

Original entry on oeis.org

0, 17, 40, 69, 104, 145, 192, 245, 304, 369, 440, 517, 600, 689, 784, 885, 992, 1105, 1224, 1349, 1480, 1617, 1760, 1909, 2064, 2225, 2392, 2565, 2744, 2929, 3120, 3317, 3520, 3729, 3944, 4165, 4392, 4625, 4864, 5109, 5360, 5617, 5880, 6149, 6424, 6705, 6992
Offset: 0

Views

Author

Omar E. Pol, May 22 2008

Keywords

Examples

			a(1)=6*1+0+11=17; a(2)=6*2+17+11=40; a(3)=6*3+40+11=69. See 2nd formula.
		

Crossrefs

Programs

Formula

a(n) = 3*n^2 + 14*n.
a(n) = a(n-1) + 6*n + 11, with a(0)=0. - Vincenzo Librandi, Aug 03 2010
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3), with a(1)=0, a(2)=17, a(3)=40. - Harvey P. Dale, Apr 29 2011
E.g.f.: (3*x^2 + 17*x)*exp(x). - G. C. Greubel, Jul 20 2017

A140680 a(n) = n*(3*n+16).

Original entry on oeis.org

0, 19, 44, 75, 112, 155, 204, 259, 320, 387, 460, 539, 624, 715, 812, 915, 1024, 1139, 1260, 1387, 1520, 1659, 1804, 1955, 2112, 2275, 2444, 2619, 2800, 2987, 3180, 3379, 3584, 3795, 4012, 4235, 4464, 4699, 4940, 5187, 5440, 5699
Offset: 0

Views

Author

Omar E. Pol, May 22 2008

Keywords

Crossrefs

Programs

Formula

a(n) = 3*n^2 + 16*n.
a(n) = 6*n + a(n-1) + 13 (with a(0)=0). - Vincenzo Librandi, Aug 03 2010
E.g.f.: (3*x^2 + 19*x)*exp(x). - G. C. Greubel, Jul 20 2017

A140689 a(n) = n*(3*n + 20).

Original entry on oeis.org

0, 23, 52, 87, 128, 175, 228, 287, 352, 423, 500, 583, 672, 767, 868, 975, 1088, 1207, 1332, 1463, 1600, 1743, 1892, 2047, 2208, 2375, 2548, 2727, 2912, 3103, 3300, 3503, 3712, 3927, 4148, 4375, 4608, 4847, 5092, 5343, 5600, 5863
Offset: 0

Views

Author

Omar E. Pol, May 22 2008

Keywords

Crossrefs

Programs

Formula

a(n) = 3*n^2 + 20*n.
a(n) = a(n-1) + 6*n + 17 (with a(0)=0). - Vincenzo Librandi, Dec 15 2010
a(n) = 3*a(n-1)-3*a(n-2)+a(n-3), with a(0)=0, a(1)=23, a(2)=52. - Harvey P. Dale, Apr 29 2016
From G. C. Greubel, Jul 21 2017: (Start)
G.f.: x*(23 - 17*x)/(1 - x)^3.
E.g.f.: x*(3*x + 23)*exp(x). (End)

A165367 Trisection a(n) = A026741(3n + 2).

Original entry on oeis.org

1, 5, 4, 11, 7, 17, 10, 23, 13, 29, 16, 35, 19, 41, 22, 47, 25, 53, 28, 59, 31, 65, 34, 71, 37, 77, 40, 83, 43, 89, 46, 95, 49, 101, 52, 107, 55, 113, 58, 119, 61, 125, 64, 131, 67, 137, 70, 143, 73, 149, 76, 155, 79, 161, 82, 167, 85, 173, 88, 179, 91, 185, 94, 191, 97, 197
Offset: 0

Views

Author

Paul Curtz, Sep 17 2009

Keywords

Comments

The other trisections are A165351 and A165355.

Crossrefs

Programs

Formula

a(n)*A022998(n) = A045944(n).
a(n)*A026741(n+1) = A000326(n+1).
a(2n) = A016777(n); a(2n+1) = A016969(n).
From R. J. Mathar Nov 22 2009: (Start)
a(n) = 2*a(n-2) - a(n-4).
G.f.: (1 + 5*x + 2*x^2 + x^3)/((1-x)^2*(1+x)^2). (End)

Extensions

All comments rewritten as formulas by R. J. Mathar, Nov 22 2009

A190816 a(n) = 5*n^2 - 4*n + 1.

Original entry on oeis.org

1, 2, 13, 34, 65, 106, 157, 218, 289, 370, 461, 562, 673, 794, 925, 1066, 1217, 1378, 1549, 1730, 1921, 2122, 2333, 2554, 2785, 3026, 3277, 3538, 3809, 4090, 4381, 4682, 4993, 5314, 5645, 5986, 6337, 6698, 7069, 7450, 7841, 8242, 8653, 9074
Offset: 0

Views

Author

Keywords

Comments

For n >= 2, hypotenuses of primitive Pythagorean triangles with m = 2*n-1, where the sides of the triangle are a = m^2 - n^2, b = 2*n*m, c = m^2 + n^2; this sequence is the c values, short sides (a) are A045944(n-1), and long sides (b) are A002939(n).

Crossrefs

Short sides (a) A045944(n-1), long sides (b) A002939(n).
Cf. A017281 (first differences), A051624 (a(n)-1), A202141.
Sequences of the form m*n^2 - 4*n + 1: -A131098 (m=0), A028872 (m=1), A056220 (m=2), A045944 (m=3), A016754 (m=4), this sequence (m=5), A126587 (m=6), A339623 (m=7), A080856 (m=8).

Programs

  • Magma
    [5*n^2 - 4*n + 1: n in [0..50]]; // Vincenzo Librandi, Jun 19 2011
    
  • Mathematica
    Table[5*n^2 - 4*n + 1, {n, 0, 100}]
    LinearRecurrence[{3,-3,1},{1,2,13},100] (* or *) CoefficientList[ Series[ (-10 x^2+x-1)/(x-1)^3,{x,0,100}],x] (* Harvey P. Dale, May 24 2011 *)
  • PARI
    a(n)=5*n^2-4*n+1 \\ Charles R Greathouse IV, Oct 16 2015
    
  • SageMath
    [5*n^2-4*n+1 for n in range(41)] # G. C. Greubel, Dec 03 2023

Formula

From Harvey P. Dale, May 24 2011: (Start)
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3); a(0)=1, a(1)=2, a(2)=13.
G.f.: (1 - x + 10*x^2)/(1-x)^3. (End)
E.g.f.: (1 + x + 5*x^2)*exp(x). - G. C. Greubel, Dec 03 2023

Extensions

Edited by Franklin T. Adams-Watters, May 20 2011

A211014 Second 14-gonal numbers: n*(6*n+5).

Original entry on oeis.org

0, 11, 34, 69, 116, 175, 246, 329, 424, 531, 650, 781, 924, 1079, 1246, 1425, 1616, 1819, 2034, 2261, 2500, 2751, 3014, 3289, 3576, 3875, 4186, 4509, 4844, 5191, 5550, 5921, 6304, 6699, 7106, 7525, 7956, 8399, 8854, 9321, 9800, 10291, 10794, 11309, 11836, 12375
Offset: 0

Views

Author

Omar E. Pol, Aug 04 2012

Keywords

Comments

Sequence found by reading the line from 0, in the direction 0, 34, ... and the line from 11 in the direction 11, 69, ..., in the square spiral whose vertices are the generalized 14-gonal numbers A195818.

Crossrefs

Bisection of A195818.
Second k-gonal numbers (k=5..14): A005449, A014105, A147875, A045944, A179986, A033954, A062728, A135705, A211013, this sequence.
Cf. A051866.
Cf. A003154.

Programs

Formula

a(n) = -2*Sum_{k=0..n-1} binomial(6*n+5, 6*k+8)*Bernoulli(6*k+8). - Michel Marcus, Jan 11 2016
From G. C. Greubel, Jul 04 2019: (Start)
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3).
G.f.: x*(11+x)/(1-x)^3.
E.g.f.: x*(11+6*x)*exp(x). (End)
From Amiram Eldar, Feb 28 2022: (Start)
Sum_{n>=1} 1/a(n) = sqrt(3)*Pi/10 + 6/25 - 3*log(3)/10 - 2*log(2)/5.
Sum_{n>=1} (-1)^(n+1)/a(n) = Pi/5 + log(2)/5 - 6/25 - sqrt(3)*log(sqrt(3)+2)/5. (End)
a(n) = A003154(n+1) - n - 1. - Leo Tavares, Jan 29 2023

A267137 Numbers of the form x^2 + x + x*y + y + y^2 where x and y are integers.

Original entry on oeis.org

0, 1, 2, 4, 5, 6, 8, 9, 10, 12, 14, 16, 17, 20, 21, 22, 24, 25, 26, 30, 32, 33, 34, 36, 37, 40, 41, 42, 44, 46, 49, 50, 52, 54, 56, 57, 58, 60, 64, 65, 66, 69, 70, 72, 74, 76, 80, 81, 82, 85, 86, 89, 90, 92, 94, 96, 97, 100, 101, 102, 104, 105, 108, 110, 112, 114, 116
Offset: 1

Views

Author

Altug Alkan, Jan 10 2016

Keywords

Comments

Inspired by relation between A003136 and A202822. See comment section of A202822.
Prime terms of this sequence are 2, 5, 17, 37, 41, 89, 97, 101, 137, 149, ...
Perfect power terms of this sequence are 1, 4, 8, 9, 16, 25, 32, 36, 49, 64, 81, 100, 121, 144, 169, ...
Obviously, A000290, A002378 and A045944 are subsequences.
The complement of this sequence is A322430. - Kemoneilwe Thabo Moseki, Dec 12 2019

Examples

			1 is a term because (-1)^2 + (-1) + (-1)*(-1) + (-1) + (-1)^2 = 1.
4 is a term because 2^2 + 2 + 2*(-2) + (-2) + (-2)^2 = 4.
24 is a term because 2^2 + 2 + 2*3 + 3 + 3^2 = 24.
		

Crossrefs

Programs

  • Mathematica
    f[{i_, j_}] := (i^2 + i*j + j^2 + i + j); Union@ Map[f, Tuples[Range[-10, 10], 2] ] (* Michael De Vlieger, Sep 23 2024, after Harvey P. Dale at A202822 *)
  • PARI
    x='x+O('x^500); p=eta(x)^3/eta(x^3); for(n=0, 499, if(polcoeff(p, n) != 0 && n%3==1, print1((n-1)/3, ", ")));
    
  • PARI
    is(n) = sumdiv( n, d, kronecker( -3, d));
    for(n=0, 1e3, if(is(3*n+1), print1(n, ", ")));
    
  • PARI
    is(n) = #bnfisintnorm(bnfinit(z^2+z+1), n);
    for(n=0, 1e3, if(is(3*n+1), print1(n, ", ")));

Formula

a(n) = (A202822(n) - 1) / 3.
Previous Showing 41-50 of 73 results. Next