cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-40 of 44 results. Next

A337812 Numbers k such that the number of prime factors, counted with multiplicity, of 2^k - 1 is greater than the corresponding count for 2^k + 1.

Original entry on oeis.org

4, 6, 8, 12, 16, 18, 20, 22, 24, 28, 30, 32, 36, 40, 42, 43, 44, 48, 52, 54, 56, 58, 60, 64, 66, 68, 70, 72, 76, 79, 80, 84, 87, 88, 90, 92, 94, 96, 100, 102, 104, 106, 108, 110, 112, 114, 116, 117, 119, 120, 124, 126, 128, 132, 136, 138, 140, 144, 146, 148, 151
Offset: 1

Views

Author

Hugo Pfoertner, Sep 23 2020

Keywords

Crossrefs

Programs

  • Mathematica
    Select[Range[152],PrimeOmega[2^#-1]>PrimeOmega[2^#+1]&] (* Harvey P. Dale, Dec 31 2022 *)
  • PARI
    for(n=1,160,if(bigomega(2^n-1)>bigomega(2^n+1),print1(n,", ")))

A109472 Cumulative sum of primes p such that 2^p - 1 is a Mersenne prime.

Original entry on oeis.org

2, 5, 10, 17, 30, 47, 66, 97, 158, 247, 354, 481, 1002, 1609, 2888, 5091, 7372, 10589, 14842, 19265, 28954, 38895, 50108, 70045, 91746, 114955, 159452, 245695, 356198, 488247, 704338, 1461177, 2320610, 3578397, 4976666, 7952887, 10974264, 17946857, 31413774, 52409785, 76446368, 102411319, 132813776, 165396433, 202553100, 245196901, 288309510
Offset: 1

Views

Author

Jonathan Vos Post, Aug 28 2005

Keywords

Comments

Prime cumulative sum of primes p such that 2^p - 1 is a Mersenne prime include: a(1) = 2, a(2) = 5, a(4) = 17, a(6) = 47, a(8) = 97, a(14) = 1609, a(18) = 10589. After 1, all such indices x of prime a(x) must be even.

Examples

			a(1) = 2, since 2^2-1 = 3 is a Mersenne prime.
a(2) = 2 + 3 = 5, since 2^3-1 = 7 is a Mersenne prime.
a(3) = 2 + 3 + 5 = 10, since 2^5-1 = 31 is a Mersenne prime.
a(4) = 2 + 3 + 5 + 7 = 17, since 2^7-1 = 127 is a Mersenne prime; 17 itself is prime (in fact a p such that 2^p-1 is a Mersenne prime).
a(18) = 2 + 3 + 5 + 7 + 13 + 17 + 19 + 31 + 61 + 89 + 107 + 127 + 521 + 607 + 1279 + 2203 + 2281 + 3217 = 10589 (which is prime).
		

Crossrefs

Cf. A000043, A000668 for the Mersenne primes, A001348, A046051, A057951-A057958.

Programs

Formula

a(n) = Sum_{i=1..n} A000043(i).

Extensions

a(38)-a(47) from Gord Palameta, Jul 21 2018

A136033 a(n) = smallest number k such that number of prime factors of 2^k-1 is exactly n (counted with multiplicity).

Original entry on oeis.org

2, 4, 6, 16, 12, 18, 24, 40, 54, 36, 102, 110, 60, 72, 108, 140, 120, 156, 144, 200, 216, 210, 240, 180, 456, 288, 336, 300, 396, 480, 882, 360, 468, 700
Offset: 1

Views

Author

Artur Jasinski, Dec 11 2007

Keywords

Crossrefs

Programs

  • Maple
    N:= 24: # to get a(1) to a(N)
    unknown:= N:
    for k from 2 while unknown > 0 do
      q:= numtheory:-bigomega(2^k-1);
      if q <= N and not assigned(A[q]) then
         A[q]:= k;
         unknown:= unknown - 1;
      fi
    od:
    seq(A[i],i=1..N); # Robert Israel, Oct 24 2014
  • Mathematica
    Module[{nn=250,tbl},tbl=Table[{k,PrimeOmega[2^k-1]},{k,nn}];Table[SelectFirst[tbl,#[[2]]==n&],{n,24}]][[;;,1]] (* The program generates the first 24 terms of the sequence. *)  (* Harvey P. Dale, May 25 2025 *)
  • PARI
    a(n) = {k = 1; while(bigomega(2^k-1) != n, k++); k;} \\ Michel Marcus, Nov 04 2013

Extensions

a(15)-a(20) from Michel Marcus, Nov 04 2013
a(21)-a(24) from Derek Orr, Oct 23 2014
a(25)-a(34) from Jinyuan Wang, Jun 07 2019

A193295 Number of prime divisors (with multiplicity) of n^2 - 1.

Original entry on oeis.org

1, 3, 2, 4, 2, 5, 3, 5, 3, 5, 2, 5, 3, 6, 3, 7, 2, 6, 3, 5, 3, 6, 3, 6, 5, 5, 4, 6, 2, 8, 3, 7, 4, 6, 3, 6, 3, 6, 3, 7, 2, 6, 4, 5, 4, 7, 3, 8, 4, 6, 3, 7, 3, 8, 4, 6, 3, 6, 2, 6, 4, 8, 5, 9, 3, 6, 3, 6, 3, 8, 2, 7, 4, 5, 5, 6, 3, 8, 5, 7, 5, 6, 3, 6, 4, 6
Offset: 2

Views

Author

Keywords

Crossrefs

Programs

A309942 Numbers k such that 2^k - 1 and 2^k + 1 have the same number of prime factors, counted with multiplicity.

Original entry on oeis.org

2, 10, 11, 14, 21, 23, 29, 39, 47, 50, 53, 55, 63, 71, 73, 74, 75, 82, 86, 95, 101, 105, 113, 115, 121, 142, 147, 150, 167, 169, 179, 181, 182, 190, 199, 203, 209, 233, 235, 253, 277, 285, 303, 307, 311, 317, 335, 337, 339, 342, 343, 347, 349, 353, 355, 358
Offset: 1

Views

Author

Hugo Pfoertner, Aug 24 2019

Keywords

Examples

			a(1) = 2: 2^2 - 1 = 3 and 2^2 + 1 are both prime,
a(2) = 10: 2^10 - 1 = 1023 = 3 * 11 * 31 and 2^10 + 1 = 1025 = 5^2 * 41 both have 3 prime factors.
		

Crossrefs

Programs

  • Magma
    [m:m in [2..400]| &+[p[2]: p in Factorization(2^m-1)] eq &+[p[2]: p in Factorization(2^m+1)]]; // Marius A. Burtea, Aug 24 2019
  • Mathematica
    Select[Range[200], PrimeOmega[2^# - 1 ] == PrimeOmega[2^# + 1 ] &] (* Amiram Eldar, Aug 24 2019 *)
  • PARI
    for(k=1, 209, my(f=bigomega(2^k-1),g=bigomega(2^k+1));if(f==g,print1(k,", ")))
    

Extensions

More terms from Amiram Eldar, Aug 24 2019

A135981 Number of distinct prime factors of A135972(n).

Original entry on oeis.org

0, 2, 2, 3, 2, 3, 2, 4, 3, 3, 4, 4, 5, 3, 4, 2, 6, 3, 3, 3, 6, 3, 6, 5, 4, 3, 4, 8, 2, 3, 4, 7, 2, 6, 3, 7, 6, 4, 3, 9, 2, 7, 5, 7, 3, 6, 6, 8, 4, 6, 2, 11, 3, 6, 7, 3, 8, 2, 7, 4, 9, 3, 12, 3, 5, 7, 7, 4, 7, 3, 9, 6, 5, 2, 12, 3, 5, 6, 10, 11, 5, 9, 3, 6, 5, 12, 2, 5, 8, 12
Offset: 2

Views

Author

Artur Jasinski, Dec 09 2007

Keywords

Examples

			A135972(3) = 15 = 3*5 which has a(3)=2 distinct prime factors.
		

Crossrefs

Programs

  • Mathematica
    k = {}; Do[If[ ! PrimeQ[2^n - 1], c = FactorInteger[2^n - 1]; d = Length[c]; AppendTo[k, d]], {n, 1, 100}]; k

Formula

a(n) = A001221(A135972(n)) .

Extensions

Offset set to 2, definition shortened - R. J. Mathar, Oct 01 2009

A140745 Smallest prime p such that the Mersenne number A000225(p) = 2^p - 1 has exactly n prime factors (counted with multiplicity).

Original entry on oeis.org

2, 11, 29, 157, 113, 223, 491, 431, 397
Offset: 1

Views

Author

Lekraj Beedassy, Jul 12 2008

Keywords

References

  • J.-M. De Koninck, Ces nombres qui nous fascinent, Entry 223, pp 63-4, Ellipse Paris 2008.

Crossrefs

Programs

  • Mathematica
    a[n_]:=Module[{p=0},Until[PrimeOmega[2^Prime[p]-1]==n,p++];Prime[p]];Array[a,6] (* James C. McMahon, Jul 14 2025 *)
  • PARI
    a(n) = forprime(p=2, oo, if(bigomega(2^p-1)==n, return(p))); \\ Jinyuan Wang, Aug 10 2021

A155900 Numbers k such that Omega(k) = Omega(2^k-1), where Omega(k) is the number of prime factors of k counted with multiplicity (A001222).

Original entry on oeis.org

1, 2, 3, 4, 5, 7, 8, 9, 13, 16, 17, 19, 27, 31, 32, 49, 61, 89, 107, 127, 521, 607, 1279, 2203, 2281, 3217
Offset: 1

Views

Author

M. F. Hasler, Feb 01 2009

Keywords

Comments

Mersenne prime exponents A000043 are a subsequence, with Omega(p)=Omega(2^p-1)=1.

Crossrefs

Programs

  • Mathematica
    Select[Range[200],PrimeOmega[#]==PrimeOmega[2^#-1]&] (* Harvey P. Dale, Apr 21 2012 *)
  • PARI
    for( i=1,999, bigomega(2^i-1)==bigomega(i) & print1(i","))

Formula

{n: A046051(n) = A001222(n)}. - R. J. Mathar, Mar 14 2009

Extensions

a(21)-a(22) from Amiram Eldar, Feb 23 2021
a(23)-a(26) from Daniel Suteu, Jan 21 2023

A215896 Largest k = 2^(m - 1)*(2^m - 1) such that bigomega(k) = n or 0 if no such k exists.

Original entry on oeis.org

1, 0, 6, 28, 0, 496, 0, 8128, 2016, 0, 130816, 0, 2096128, 33550336, 0, 0, 134209536, 8589869056, 0, 137438691328, 0, 0, 0, 34359607296, 35184367894528, 8796090925056, 0, 562949936644096, 2251799780130816, 9007199187632128, 140737479966720, 2305843008139952128, 0
Offset: 1

Views

Author

Gerasimov Sergey, Aug 25 2012

Keywords

Comments

Largest k = 2^(m-1)*(2^m-1) such that bigomega(k) = prime(n) or 0 if no such k exists (other version): 6, 28, 496, 8128, 0, 0, 8589869056, 137438691328, 34359607296, 9007199187632128, 2305843008139952128, 0, ...
Mersenne exponents (A000043): numbers n such that omega(2^(n-1)*(2^n-1)) = 2, or bigomega(2^(n-1)*(2^n-1)) = n, or tau(2^(n-1)*(2^n-1)) = 2n, or sigma(2^(n-1)*(2^n-1)) = 2^n*(2^n-1).
Smallest k = 2^(m-1)*(2^m-1) such that bigomega(k) = n or 0 if no such k exists : 1, 0, 6, 28, 0, 120, 0, 8128, 2016, 0, 32640, 0, 523776, 33550336, 0, 0, 8386560, 536854528, 0, 2147450880, 0, 0, 0, 34359607296, 2199022206976, 549755289600, 0, 562949936644096, 2251799780130816,...

Examples

			a(0) = 1 because 2^(1-1)*(2^1-1) = 1 and A001222(1) = 0,
a(2) = 6 because 2^(2-1)*(2^2-1) = 6 and A001222(6) = 2,
a(3) = 28 because 2^(3-1)*(2^3-1) = 28 and A001222(28) = 3,
a(5) = 496 because 2^(4-1)*(2^4-1) = 120, 2^(5-1)*(2^5-1) = 496 and A001222(120) = A001222(496) = 5, 496 > 120.
a(7) = 8128 because 2^(7-1)*(2^7-1) = 8128 and A001222(8128) = 7,
a(8) = 2016 because 2^(6-1)*(2^6-1) = 2016 and A001222(2016) = 8,
a(10) = 130816 because 2^(8-1)*(2^8-1) = 32640, 2^(9-1)*(2^9-1) = 130816 and A001222(32640) = A001222(130816) = 10, 130816 > 32640.
		

Crossrefs

Programs

  • Maple
    A215896 := proc(n)
          local m,k;
          for m from n+2 by -1 do
            k := 2^(m-1)*(2^m-1) ;
            if k < 0 then
                return 0 ;
            end if;
            if numtheory[bigomega](k) = n then
                return k ;
            end if;
        end do:
    end proc: # R. J. Mathar, Sep 11 2012

A226116 Numbers k such that one of 2^k-1 or 2^k+1 is semiprime, but not both.

Original entry on oeis.org

3, 4, 5, 6, 7, 9, 12, 13, 17, 19, 20, 28, 31, 32, 37, 40, 41, 43, 49, 59, 61, 64, 67, 79, 83, 92, 97, 103, 104, 109, 127, 128, 131, 137, 139, 148, 149, 191, 197, 227, 241, 256, 269, 271, 281, 293, 313, 356, 373, 379, 421, 457, 487, 523, 596, 692, 701, 727, 809, 881, 971, 983, 997, 1004, 1061, 1063
Offset: 1

Views

Author

Irina Gerasimova, May 28 2013

Keywords

Examples

			2^3-1=7 is not a semiprime but 2^3+1 =9 is, so 3 is in the sequence.
2^4-1 =15 is a semiprime but 2^4+1 =17 is not, so 4 is in the sequence.
2^8-1 =255 is a 3-prime (not a 2-prime) and 2^8+1 =257 is a prime (not a 2-prime), so 8 is not in the sequence.
		

Crossrefs

Programs

  • PARI
    isok(n) = {nbm = bigomega(2^n-1); nbp = bigomega(2^n+1); return (((nbm == 2) || (nbp == 2)) && ! ((nbm == 2) && (nbp == 2)));} \\ Michel Marcus, Aug 23 2013

Extensions

Original sequence of 4 small numbers replaced by a wider sequence. - R. J. Mathar, Jun 13 2013
Previous Showing 31-40 of 44 results. Next