cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-27 of 27 results.

A274406 Numbers m such that 9 divides m*(m + 1).

Original entry on oeis.org

0, 8, 9, 17, 18, 26, 27, 35, 36, 44, 45, 53, 54, 62, 63, 71, 72, 80, 81, 89, 90, 98, 99, 107, 108, 116, 117, 125, 126, 134, 135, 143, 144, 152, 153, 161, 162, 170, 171, 179, 180, 188, 189, 197, 198, 206, 207, 215, 216, 224, 225, 233, 234, 242, 243, 251, 252, 260, 261, 269
Offset: 1

Views

Author

Bruno Berselli, Jun 20 2016

Keywords

Comments

Equivalently, numbers congruent to 0 or 8 mod 9.
Terms of A007494 with indices in A047264. Also, terms of A060464 with indices in A047335.

Crossrefs

Cf. A008591 (first bisection), A010689 (first differences), A017257 (second bisection).
Cf. similar sequences in which m*(m+1) is divisible by k: A014601 (k=4), A047208 (k=5), A007494 (k=3 and 6), A047335 (k=7), A047521 (k=8), this sequence (k=9).
Cf. A301451: numbers congruent to {1, 7} mod 9; A193910: numbers congruent to {2, 6} mod 9.

Programs

  • Magma
    [n: n in [0..300] | IsDivisibleBy(n*(n+1),9)];
  • Mathematica
    Select[Range[0, 300], Divisible[# (# + 1), 9] &]
  • PARI
    for(n=0, 300, if(n*(n+1)%9==0, print1(n", ")))
    
  • Sage
    [n for n in range(300) if 9.divides(n*(n+1))]
    

Formula

G.f.: x^2*(8 + x)/((1 + x)*(1 - x)^2).
a(n) = (18*n + 7*(-1)^n - 11)/4. Therefore: a(2*m) = 9*m-1, a(2*m+1) = 9*m. It follows that a(j)+a(k) and a(j)*a(k) belong to the sequence if j and k are not both even.
a(n) = -A090570(-n+2).
a(n) = a(n-1) + a(n-2) - a(n-3).
a(2*r+1) + a(2*r+s+1) = a(4*r+s+1) and a(2*r) + a(2*r+2*s+1) = a(4*r+2*s). A particular case provided by these identities: a(n) = a(n - 2*floor(n/6)) + a(2*floor(n/6) + 1).
E.g.f.: 1 + ((9*x - 2)*cosh(x) + 9*(x - 1)*sinh(x))/2. - Stefano Spezia, Apr 24 2021

A301570 Expansion of Product_{k>=1} (1 + x^(5*k))*(1 + x^(5*k-1)).

Original entry on oeis.org

1, 0, 0, 0, 1, 1, 0, 0, 0, 2, 1, 0, 0, 1, 3, 2, 0, 0, 2, 5, 2, 0, 0, 4, 7, 3, 0, 1, 7, 10, 4, 0, 2, 11, 14, 5, 0, 4, 17, 19, 6, 0, 8, 25, 25, 8, 1, 13, 36, 33, 10, 2, 21, 50, 43, 12, 4, 33, 69, 55, 15, 8, 49, 93, 70, 18, 14, 71, 124, 88, 23, 23, 102, 163, 110, 29, 37
Offset: 0

Views

Author

Ilya Gutkovskiy, Mar 23 2018

Keywords

Comments

Number of partitions of n into distinct parts congruent to 0 or 4 mod 5.

Examples

			a(14) = 3 because we have [14], [10, 4] and [9, 5].
		

Crossrefs

Programs

  • Mathematica
    nmax = 76; CoefficientList[Series[Product[(1 + x^(5 k)) (1 + x^(5 k - 1)), {k, 1, nmax}], {x, 0, nmax}], x]
    nmax = 76; CoefficientList[Series[x QPochhammer[-1, x^5] QPochhammer[-x^(-1), x^5]/(2 (1 + x)), {x, 0, nmax}], x]
    nmax = 76; CoefficientList[Series[Product[(1 + Boole[MemberQ[{0, 4}, Mod[k, 5]]] x^k), {k, 1, nmax}], {x, 0, nmax}], x]

Formula

G.f.: Product_{k>=2} (1 + x^A047208(k)).
a(n) ~ exp(Pi*sqrt(2*n/15)) / (2^(41/20) * 15^(1/4) * n^(3/4)). - Vaclav Kotesovec, Mar 24 2018

A219190 Numbers of the form k*(5*k+1), where k = 0,-1,1,-2,2,-3,3,...

Original entry on oeis.org

0, 4, 6, 18, 22, 42, 48, 76, 84, 120, 130, 174, 186, 238, 252, 312, 328, 396, 414, 490, 510, 594, 616, 708, 732, 832, 858, 966, 994, 1110, 1140, 1264, 1296, 1428, 1462, 1602, 1638, 1786, 1824, 1980, 2020, 2184, 2226, 2398, 2442, 2622, 2668, 2856, 2904, 3100
Offset: 1

Views

Author

Bruno Berselli, Nov 14 2012

Keywords

Comments

Equivalently, numbers m such that 20*m+1 is a square.
Also, integer values of h*(h+1)/5.
More generally, for the numbers of the form n*(k*n+1) with n in A001057, we have:
. generating function (offset 1): x^2*(k-1+2*x+(k-1)*x^2)/((1+x)^2*(1-x)^3);
. n-th term: b(n) = (2*k*n*(n-1)+(k-2)*(-1)^n*(2*n-1)+k-2)/8;
. first differences: (n-1)*((-1)^n*(k-2)+k)/2;
. b(2n+1)-b(2n) = 2*n (independent from k);
. (4*k)*b(n)+1 = (2*k*n+(k-2)*(-1)^n-k)^2/4.

Crossrefs

Subsequence of A011858.
Cf. A090771: square roots of 20*a(n)+1 (see the first comment).
Cf. numbers of the form n*(k*n+1) with n in A001057: k=0, A001057; k=1, A110660; k=2, A000217; k=3, A152749; k=4, A074378; k=5, this sequence; k=6, A036498; k=7, A219191; k=8, A154260.
Cf. similar sequences listed in A219257.

Programs

  • Magma
    k:=5; f:=func; [0] cat [f(n*m): m in [-1,1], n in [1..25]];
    
  • Magma
    I:=[0,4,6,18,22]; [n le 5 select I[n] else Self(n-1)+2*Self(n-2)-2*Self(n-3)-Self(n-4)+Self(n-5): n in [1..50]]; // Vincenzo Librandi, Aug 18 2013
  • Mathematica
    Rest[Flatten[{# (5 # - 1), # (5 # + 1)} & /@ Range[0, 25]]]
    CoefficientList[Series[2 x (2 + x + 2 x^2) / ((1 + x)^2 (1 - x)^3), {x, 0, 50}], x] (* Vincenzo Librandi, Aug 18 2013 *)
    LinearRecurrence[{1,2,-2,-1,1},{0,4,6,18,22},50] (* Harvey P. Dale, Jan 21 2015 *)

Formula

G.f.: 2*x^2*(2 + x + 2*x^2)/((1 + x)^2*(1 - x)^3).
a(n) = a(-n+1) = (10*n*(n-1) + 3*(-1)^n*(2*n - 1) + 3)/8.
a(n) = 2*A057569(n) = A008851(n+1)*A047208(n)/5.
a(n) = a(n-1) + 2*a(n-2) - 2*a(n-3) - a(n-4) + a(n-5). - Harvey P. Dale, Jan 21 2015
Sum_{n>=2} 1/a(n) = 5 - sqrt(1+2/sqrt(5))*Pi. - Amiram Eldar, Mar 15 2022
a(n) = A132356(n-1)/2, n >= 1. - Bernard Schott, Mar 15 2022

A002798 a(n) = a(n-1) + a(n-2) - a(n-3).

Original entry on oeis.org

18, 45, 69, 96, 120, 147, 171, 198, 222, 249, 273, 300, 324, 351, 375, 402, 426, 453, 477, 504, 528, 555, 579, 606, 630, 657, 681, 708, 732, 759, 783, 810, 834, 861, 885, 912, 936, 963, 987, 1014, 1038, 1065, 1089
Offset: 1

Views

Author

Keywords

Comments

The old definition was a(n) = a(n-2)+a(n-3)-a(n-5).
The following applies to this sequence and also to all sequences of the form a(n) = a(n-1) + a(n-2) - a(n-3), regardless of initial values: (a(n+3i) + a(n))/(a(n+2i) + a(n+i)) = 1, as long as a(n+2i) + a(n+i) != 0. - Klaus Purath, Jun 05 2024

References

  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Maple
    A002798:=3*(6+9*z+2*z**2)/(z+1)/(z-1)**2; # Simon Plouffe in his 1992 dissertation
  • Mathematica
    LinearRecurrence[{1,1,-1},{18,45,69},50] (* Harvey P. Dale, Sep 17 2023 *)

Formula

a(n) = 6*A007310(n) + 3*A047208(n).
a(n) = (51*n - 12)/2 - 3*(1 - (-1)^n)/4 = 2*a(n-1) - a(n-2) + 3(-1)^n. - Klaus Purath, Jun 05 2024

Extensions

Definition simplified by Ray Chandler. - N. J. A. Sloane, Mar 07 2024

A165720 Integers of the form k*(k+11)/10.

Original entry on oeis.org

6, 8, 18, 21, 35, 39, 57, 62, 84, 90, 116, 123, 153, 161, 195, 204, 242, 252, 294, 305, 351, 363, 413, 426, 480, 494, 552, 567, 629, 645, 711, 728, 798, 816, 890, 909, 987, 1007, 1089, 1110, 1196, 1218, 1308, 1331, 1425, 1449, 1547, 1572, 1674, 1700, 1806
Offset: 1

Views

Author

Keywords

Comments

Integers of the form k + k*(k+1)/10 = k + A000217(k)/5. For k see A047208, for A000217(k)/5 see A057569. - R. J. Mathar, Sep 25 2009
Are all terms composite numbers?
Yes. They are alternately of the form (h+2)*(5*h-1)/2 and h*(5*h+11)/2, with h>0. - Bruno Berselli, Dec 22 2016

Crossrefs

Programs

  • Mathematica
    Select[k = Range[0, 130]; k (k + 11)/10, IntegerQ] (* Bruno Berselli, Dec 22 2016 *)

Formula

From R. J. Mathar, Sep 25 2009: (Start)
a(n) = a(n-1) + 2*a(n-2) - 2*a(n-3) - a(n-4) + a(n-5).
a(n) = 5*(2*n^2 + 10*n + 3)/16 - 3*(-1)^n*(5 + 2*n)/16.
G.f.: x*(-6 - 2*x + 2*x^2 + x^3) / ((1 + x)^2*(x - 1)^3). (End)
Sum_{n>=1} 1/a(n) = 514/363 - 2*Pi*sqrt(1+2/sqrt(5))/11. - Amiram Eldar, Jul 26 2024

Extensions

Definition simplified by R. J. Mathar, Sep 25 2009
Corrected A-number in my comment - R. J. Mathar, Oct 30 2009

A317807 Number of set partitions of [k] into 5 blocks with equal element sum, where k is the n-th positive integer that allows such a partition.

Original entry on oeis.org

1, 1, 68, 187, 27763, 108516, 25958279, 100664383, 26388943467, 109026138857, 33100108402861, 139752234469078, 46498731704890104, 200612215343574676, 71799817534098086846, 314741192906319529056
Offset: 1

Views

Author

Alois P. Heinz, Aug 07 2018

Keywords

Comments

k = 9, 10, 14, 15, 19, ... A047208(n+3) for n = 1, 2, 3, 4, 5, ... .

Examples

			a(1) = 1: 18|27|36|45|9 with k = 9.
a(2) = 1: 1(10)|29|38|47|56 with k = 10.
		

Crossrefs

Programs

  • Maple
    b:= proc() option remember; local i, j, t; `if`(args[1]=0,
          `if`(nargs=2, 1, b(args[t] $t=2..nargs)), add(
          `if`(args[j] -args[nargs]<0, 0, b(sort([seq(args[i]-
          `if`(i=j, args[nargs], 0), i=1..nargs-1)])[],
                    args[nargs]-1)), j=1..nargs-1))
        end:
    a:= proc(n) option remember; (k-> (m->
          b((m/5)$5, k)/5!)(k*(k+1)/2))(5+5*n/2+3/4*(1-(-1)^n))
        end:
    seq(a(n), n=1..8);
  • Mathematica
    b[args_List] := b[args] = Module[{nargs = Length[args]}, If[args[[1]] == 0, If[nargs == 3, 1, b[args // Rest]], Sum[If[args[[j]] - Last[args] < 0, 0, b[Append[Sort[Flatten[Table[args[[i]] - If[i == j, Last[args], 0], {i, 1, nargs - 1}]]], Last[args] - 1]]], {j, 1, nargs - 1}]]];
    a[n_] := a[n] = Function[k, Function[m, b[Append[Table[m/5, {5}], k]]/5!][k (k + 1)/2]][5 + 5n/2 + (3/4)(1 - (-1)^n)];
    Table[Print[n, " ", a[n]]; a[n], {n, 1, 12}] (* Jean-François Alcover, Dec 16 2020, after Alois P. Heinz *)

Formula

a(n) = A275714(A047208(n+3),5).

A154619 Primes of the form (4k^2 + 4k - 5)/5.

Original entry on oeis.org

23, 71, 167, 191, 479, 743, 1583, 2039, 2927, 3863, 5711, 6551, 7919, 9767, 10487, 11423, 15791, 16703, 18119, 21647, 21911, 24359, 27527, 32159, 35111, 35447, 38543, 43991, 45887, 46271, 52223, 54287, 55967, 60719, 67511, 69383, 76631
Offset: 1

Views

Author

Vincenzo Librandi, Jan 16 2009

Keywords

Comments

The numbers k that generate integers of the form (4k^2 + 4k - 5)/5 are in A047208. The primes are generated by the subset k = 5, 9, 14, 15, 24, 30, ... of these. - R. J. Mathar, Jan 25 2009

Crossrefs

Cf. A028880.

Programs

  • Maple
    a := proc (n) if type((4/5)*n^2+(4/5)*n-1, integer) = true and isprime((4/5)*n^2+(4/5)*n-1) = true then (4/5)*n^2+(4/5)*n-1 else end if end proc: seq(a(n), n = 1 .. 340); # Emeric Deutsch, Jan 21 2009
  • Mathematica
    Select[Table[(4n^2+4n-5)/5,{n,3,200}],PrimeQ] (* Vincenzo Librandi, Jul 23 2012 *)

Extensions

Definition corrected and more terms from R. J. Mathar and Omar E. Pol, Jan 24 2009
Extended by Emeric Deutsch, Jan 21 2009
Previous Showing 21-27 of 27 results.