A055551 Number of base-2 Euler-Jacobi pseudoprimes (A047713) less than 10^n.
0, 0, 1, 12, 36, 114, 375, 1071, 2939, 7706, 20417, 53332, 139597, 364217, 957111, 2526795, 6725234, 18069359, 48961462
Offset: 1
Examples
Below 10^3 there is only one Euler-Jacobi pseudoprime, 561. Therefore a(3) = 1.
References
- Richard K. Guy, Unsolved Problems in Number Theory, 3rd Edition, Springer, 2004, section A12, p. 44.
- Paulo Ribenboim, The Little Book of Bigger Primes, Springer-Verlag NY 2004. See p. 219.
Links
- Jan Feitsma and William F. Galway, Tables of pseudoprimes and related data.
- Richard G.E. Pinch, The pseudoprimes up to 10^13, Algorithmic Number Theory, 4th International Symposium, ANTS-IV, Leiden, The Netherlands, July 2-7, 2000, Proceedings, Springer, Berlin, Heidelberg, 2000, pp. 459-473, alternative link.
- Carl Pomerance, John L. Selfridge, and Samuel S. Wagstaff, The pseudoprimes to 25*10^9, Mathematics of Computation, Vol. 35, No. 151 (1980), pp. 1003-1026.
- Eric Weisstein's World of Mathematics, Euler-Jacobi Pseudoprime.
- Eric Weisstein's World of Mathematics, Pseudoprime.
Programs
-
Mathematica
ejpspQ[n_] := CompositeQ[n] && PowerMod[2, (n - 1)/2, n] == Mod[JacobiSymbol[2, n], n]; s = {}; c = 0; p = 10; n = 1; Do[If[ejpspQ[n], c++]; If[n > p, AppendTo[s, c]; p *= 10], {n, 1, 1000001, 2}]; s (* Amiram Eldar, Nov 08 2019 *)
Extensions
a(13) corrected and a(14)-a(19) added by Amiram Eldar, Nov 08 2019 (calculated from Feitsma & Galway's tables)
Comments