cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 49 results. Next

A124753 a(3n+k) = (k+1)*binomial(4n+k, n)/(3n+k+1), where k is n reduced mod 3.

Original entry on oeis.org

1, 1, 1, 1, 2, 3, 4, 9, 15, 22, 52, 91, 140, 340, 612, 969, 2394, 4389, 7084, 17710, 32890, 53820, 135720, 254475, 420732, 1068012, 2017356, 3362260, 8579560, 16301164, 27343888, 70068713, 133767543, 225568798, 580034052, 1111731933, 1882933364, 4855986044, 9338434700
Offset: 0

Views

Author

Paul Barry, Nov 06 2006

Keywords

Comments

Row sums of Riordan array (1,x(1-x^3))^(-1). Also row sums of A124752.
a(n) is the number of ordered trees (A000108) with n vertices in which every non-leaf non-root vertex has exactly two children that are leaves. For example, a(4) counts the 2 trees
\ /
| and \|/ . - David Callan, Aug 22 2014

Crossrefs

Cf. A084080, A002293, A069271 (trisection), A006632 (trisection).

Programs

  • Maple
    A124753 := proc(n)
        local k,np;
        k := modp(n,3) ;
        np := floor(n/3) ;
        (k+1)*binomial(np+n,np)/(n+1) ;
    end proc:
    seq(A124753(n),n=0..40) ; # R. J. Mathar, Oct 30 2014
  • Mathematica
    a[n_] := Module[{q, k}, {q, k} = QuotientRemainder[n, 3]; (k+1)*Binomial[4q + k, q]/(3q + k + 1)];
    Table[a[n], {n, 0, 34}] (* Jean-François Alcover, Nov 20 2017 *)
  • PARI
    {a(n)=local(A=1+x); for(i=1,n,A=1+x*A*exp(sum(m=1,n\3,3*polcoeff(log(A+x*O(x^n)),3*m)*x^(3*m))+x*O(x^n))); polcoeff(A,n)} \\ Paul D. Hanna, Jun 04 2012
    
  • PARI
    apr(n, p, r) = r*binomial(n*p+r, n)/(n*p+r);
    a(n) = apr(n\3, 4, n%3+1); \\ Seiichi Manyama, Jul 20 2025

Formula

a(3n) = A002293(n), a(3n+1) = A069271(n), a(3n+2) = A006632(n+1).
a(n) = ((mod(n,3)+1)*C(4*floor(n/3)+mod(n,3), floor(n/3))/ (3*floor(n/3) + 1 + mod(n, 3))). - Paul Barry, Dec 14 2006
G.f. satisfies: A(x) = 1 + x*A(x)^2*A(w*x)*A(w^2*x), where w = exp(2*Pi*I/3). - Paul D. Hanna, Jun 04 2012
G.f. satisfies: A(x) = 1 + x*A(x)*G(x^3) where G(x) = 1 + x*G(x)^4 is the g.f. of A002293. - Paul D. Hanna, Jun 04 2012
Conjecture: +8019*n*(n-1)*(n+1)*a(n) +17496*n*(n-1)*(n-3)*a(n-1) +2592*(3*n-5)*(n-1)*(3*n-16)*a(n-2) +216*(-224*n^3+48*n^2+3926*n-6331)*a(n-3) +576*(-288*n^3+2448*n^2-6558*n+5443)*a(n-4) +768*(-288*n^3+3600*n^2-14878*n+20375)*a(n-5) -8192*(4*n-23)*(2*n-11)*(4*n-21)*a(n-6)=0. - R. J. Mathar, Oct 30 2014
a(0) = 1; a(n) = Sum_{k=0..floor((n-1)/3)} a(3*k) * a(n-1-3*k). - Seiichi Manyama, Jul 07 2025

A369929 Array read by antidiagonals: T(n,k) is the number of achiral noncrossing partitions composed of n blocks of size k.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 2, 3, 1, 1, 1, 1, 3, 3, 6, 1, 1, 1, 1, 3, 5, 7, 10, 1, 1, 1, 1, 4, 5, 16, 12, 20, 1, 1, 1, 1, 4, 7, 18, 31, 30, 35, 1, 1, 1, 1, 5, 7, 31, 35, 102, 55, 70, 1, 1, 1, 1, 5, 9, 34, 64, 136, 213, 143, 126, 1
Offset: 0

Views

Author

Andrew Howroyd, Feb 07 2024

Keywords

Comments

T(n,2*k-1) is the number of achiral noncrossing k-gonal cacti with n polygons.

Examples

			Array begins:
===============================================
n\k| 1  2   3   4    5    6    7    8     9 ...
---+-------------------------------------------
0  | 1  1   1   1    1    1    1    1     1 ...
1  | 1  1   1   1    1    1    1    1     1 ...
2  | 1  1   1   1    1    1    1    1     1 ...
3  | 1  2   2   3    3    4    4    5     5 ...
4  | 1  3   3   5    5    7    7    9     9 ...
5  | 1  6   7  16   18   31   34   51    55 ...
6  | 1 10  12  31   35   64   70  109   117 ...
7  | 1 20  30 102  136  296  368  651   775 ...
8  | 1 35  55 213  285  663  819 1513  1785 ...
9  | 1 70 143 712 1155 3142 4495 9304 12350 ...
...
		

Crossrefs

Columns are: A000012, A001405(n-1), A047749 (k=3), A369930 (k=4), A143546 (k=5), A143547 (k=7), A143554 (k=9), A192893 (k=11).

Programs

  • PARI
    \\ u(n,k,r) are Fuss-Catalan numbers.
    u(n,k,r) = {r*binomial(k*n + r, n)/(k*n + r)}
    e(n,k) = {sum(j=0, n\2, u(j, k, 1+(n-2*j)*k/2))}
    T(n, k)={if(n==0, 1, if(k%2, if(n%2, 2*u(n\2, k, (k+1)/2), u(n/2, k, 1) + u(n/2-1, k, k)), e(n, k) + if(n%2, u(n\2, k, k/2)))/2)}

Formula

T(n,k) = 2*A303929(n,k) - A303694(n,k).
T(n,2*k-1) = 2*A361239(n,k) - A361236(n,k).

A047765 Number of dissectable polyhedra with n tetrahedral cells and symmetry of type P.

Original entry on oeis.org

0, 0, 0, 1, 0, 2, 0, 2, 0, 7, 0, 12, 0, 29, 0, 55, 0, 143, 0, 271, 0, 728, 0, 1428, 0, 3873, 0, 7752, 0, 21318, 0, 43256, 0, 120175, 0, 246675, 0, 690678, 0, 1430715, 0, 4032015, 0, 8414610, 0, 23841480, 0, 50067108, 0, 142498637, 0, 300830572
Offset: 1

Views

Author

Keywords

Comments

One of 17 different symmetry types comprising A007173 and A027610 and one of 10 for A371351. Also the number of tetrahedral clusters or polyominoes of the regular tiling with Schläfli symbol {3,3,oo}, both having type P achiral symmetry and n tetrahedral cells. The center of symmetry is the altitude of a tetrahedral face (21); the order of the symmetry group is 4. An achiral polyomino is identical to its reflection. - Robert A. Russell, Mar 22 2024

Crossrefs

Cf. A047767.
Cf. A007173 (oriented), A027610 (unoriented), A371351 (achiral), A001764 (rooted), A047749 (type U), A047764 (type Q).

Programs

  • Mathematica
    Table[If[OddQ[n],0,If[OddQ[n/2],2Binomial[(3n-2)/4,(n-2)/4],Binomial[3n/4,n/4]]/(n/2+1)-Switch[Mod[n,12],2,6Binomial[(n-2)/4,(n-2)/12],8,12Binomial[(n-4)/4,(n-2)/6],,0]/(n+4)],{n,52}] (* _Robert A. Russell, Mar 22 2024 *)

Formula

If n=2m then A047749(m) - A047764(n), otherwise 0.
G.f.: G(z^4) + z^2*G(z^4)^2 - z^2*G(z^12) - z^8*G(z^12)^2, where G(z) = 1 + z*G(z)^3 is the g.f. for A001764. - Robert A. Russell, Mar 22 2024

A047773 Number of dissectable polyhedra with n tetrahedral cells and symmetry of type D.

Original entry on oeis.org

0, 0, 0, 1, 0, 0, 1, 1, 0, 2, 3, 0, 3, 5, 0, 7, 11, 0, 12, 23, 0, 30, 55, 0, 55, 114, 0, 143, 272, 0, 273, 588, 0, 728, 1428, 0, 1428, 3156, 0, 3876, 7750, 0, 7752, 17427, 0, 21318, 43263, 0, 43263, 98516, 0, 120175, 246672, 0, 246675, 567281, 0
Offset: 1

Views

Author

Keywords

Comments

One of 17 different symmetry types comprising A007173 and A027610 and one of 10 for A371351. Also the number of tetrahedral clusters or polyominoes of the regular tiling with Schläfli symbol {3,3,oo}, both having type D achiral symmetry and n tetrahedral cells. The center of symmetry is the altitude of a tetrahedral cell (32); the order of the symmetry group is 6. An achiral polyomino is identical to its reflection. - Robert A. Russell, Mar 23 2024

Crossrefs

Cf. A007173 (oriented), A027610 (unoriented), A371351 (achiral), A001764 (rooted), A047749 (type U), A047750 (type V), A047751 (type K), A047764 (type Q).

Programs

  • Mathematica
    Table[Switch[Mod[n,6],1,If[1==n,0,3Binomial[(n-1)/2,(n-1)/6]/(n+2)],2,6Binomial[n/2,(n-2)/6]/(n+4)-3Binomial[(n-2)/2,(n-2)/6]/(2n+2)-If[2==Mod[n,12],3Binomial[(n-2)/4,(n-2)/12],6Binomial[(n-4)/4,(n-8)/12]]/(n+4),4,6Binomial[(n-2)/2,(n-4)/6]/(n+2),5,3Binomial[(n+1)/2,(n+1)/6]/(n+4)-Switch[Mod[n,24],5,12Binomial[(n-5)/8,(n-5)/24],17,24Binomial[(n-9)/8,(n-17)/24],,0]/(n+7),,0],{n,60}] (* Robert A. Russell, Mar 23 2024 *)
  • PARI
    /* here U=A047749, V=A047750, K=A047751, and Q=A047764 */
    U(n)={if(n%2,my(m=(n-1)/2);(3*m+1)!/((m+1)!*(2*m+1)!),my(m=n/2);(3*m)!/(m!*(2*m+1)!))};
    V(n)={if(n%2,my(m=(n-1)/2);6*(3*m+2)!/(m!*(2*m+3)!),my(m=n/2);(3*m)!*(5*m+1)/((m+1)!*(2*m+1)!))};
    K(n)={if(n==1,1,if(n<5,0,if(n%12==5,U((n-5)/12),0)))};
    Q(n)={if(n<8,0,if(n%6==2,U((n-2)/6),0))};
    D(n)={if(n<3||n%3==0,0,if(n%3==1,U((n-1)/3),(1/2)*(V((n-2)/3)-2*K(n)-Q(n))))};
    for(k=1,57,print1(D(k),", ")) \\ Hugo Pfoertner, Mar 07 2020

Formula

If n=3m+2 then (1/2)*(A047750(m) - 2*A047751(n) - A047764(n)), if n=3m+1 then A047749(m), otherwise 0.
G.f.: (G(z^6)-1)/z + z*G(z^6) - z + z^2*G(z^6)^2 + z^4*G(z^6)^2 - z^5*G(z^24) - z^17*G(z^24)^2 - (z^2*G(z^6) + z^2*G(z^12) + z^8*G(z^12)^2)/2, where G(z) = 1 + z*G(z)^3 is the g.f. for A001764. - Robert A. Russell, Mar 23 2024

A369472 Number of achiral polyominoes composed of n pentagonal cells of the hyperbolic regular tiling with Schläfli symbol {5,oo}.

Original entry on oeis.org

1, 1, 2, 4, 9, 22, 52, 140, 340, 969, 2394, 7084, 17710, 53820, 135720, 420732, 1068012, 3362260, 8579560, 27343888, 70068713, 225568798, 580034052, 1882933364, 4855986044, 15875338990, 41043559340, 134993766600
Offset: 1

Views

Author

Robert A. Russell, Jan 23 2024

Keywords

Comments

A stereographic projection of the {5,oo} tiling on the Poincaré disk can be obtained via the Christensson link.

Crossrefs

Column k=5 of A370060.
Polyominoes: A005038 (oriented), A005040 (unoriented), A369471 (chiral), A002293 (rooted), A047749 {4,oo}, A143546 {6,oo}.

Programs

  • Mathematica
    p=5; Table[If[EvenQ[n],Binomial[(p-1)n/2,n/2]/((p-2)n/2+1),If[OddQ[p],(p-1)Binomial[(p-1)n/2-1,(n-1)/2]/((p-2)n+1),p Binomial[(p-1)n/2-1/2,(n-1)/2]/((p-2)n+2)]],{n,35}]

Formula

For n even, a(n) = C(2n,n/2)/(3n/2+1).
For n odd, a(n) = 4*C(2n-1,(n-1)/2)/(3n+1).
a(n+2)/a(n) ~ 256/27. a(2m+1)/a(2m) ~ 32/9; a(2m)/a(2m-1) ~ 8/3.
a(n) = 2*A005040(n) - A005038(n) = A005038(n) - 2*A369471(n) = A005040(n) - A369471(n).
G.f.: G(z^2)+z*G(z^2)^2, where G(z)=1+z*G(z)^4, the generating function for A002293.
a(2m) = A002293(m) ~ (4^4/3^3)^m*sqrt(4/(2*Pi*(3*m)^3)). - Robert A. Russell, Jul 15 2024

A370062 Array read by antidiagonals: T(n,k) is the number of achiral dissections of a polygon into n k-gons by nonintersecting diagonals, n >= 1, k >= 3.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 2, 3, 2, 1, 1, 3, 4, 7, 5, 1, 1, 3, 5, 9, 12, 5, 1, 1, 4, 6, 18, 22, 30, 14, 1, 1, 4, 7, 21, 35, 52, 55, 14, 1, 1, 5, 8, 34, 51, 136, 140, 143, 42, 1, 1, 5, 9, 38, 70, 190, 285, 340, 273, 42, 1, 1, 6, 10, 55, 92, 368, 506, 1155, 969, 728, 132
Offset: 1

Views

Author

Andrew Howroyd, Feb 08 2024

Keywords

Comments

The polygon prior to dissection will have n*(k-2)+2 sides.

Examples

			Array begins:
=============================================
n\k|  3   4   5    6    7    8    9    10 ...
---+-----------------------------------------
1  |  1   1   1    1    1    1    1     1 ...
2  |  1   1   1    1    1    1    1     1 ...
3  |  1   2   2    3    3    4    4     5 ...
4  |  2   3   4    5    6    7    8     9 ...
5  |  2   7   9   18   21   34   38    55 ...
6  |  5  12  22   35   51   70   92   117 ...
7  |  5  30  52  136  190  368  468   775 ...
8  | 14  55 140  285  506  819 1240  1785 ...
9  | 14 143 340 1155 1950 4495 6545 12350 ...
  ...
		

Crossrefs

Columns are A208355(n-1), A047749 (k=4), A369472 (k=5), A143546 (k=6), A143547 (k=8), A143554 (k=10), A192893 (k=12).
Cf. A070914 (rooted), A295224 (oriented), A295260 (unoriented), A369929, A370060 (achiral rooted at cell).

Programs

  • PARI
    \\ here u is Fuss-Catalan sequence with p = k-1.
    u(n, k, r) = {r*binomial((k - 1)*n + r, n)/((k - 1)*n + r)}
    T(n, k) = {(if(n%2, u((n-1)/2, k, k\2), if(k%2, u(n/2-1, k, k-1), u(n/2, k, 1))))}
    for(n=1, 9, for(k=3, 10, print1(T(n, k), ", ")); print);

Formula

T(n,k) = 2*A295260(n,k) - A295224(n,k).
T(n,2*k+1) = A370060(n,2*k+1).
T(n,2*k) = A369929(n,2*k-1).

A047762 Number of chiral pairs of dissectable polyhedra with n tetrahedral cells and symmetry of type E.

Original entry on oeis.org

0, 0, 0, 0, 1, 0, 6, 0, 32, 0, 176, 0, 952, 0, 5302, 0, 29960, 0, 172536, 0, 1007575, 0, 5959656, 0, 35622384, 0, 214875104, 0, 1306303424, 0, 7995896502, 0, 49236826080, 0, 304799714960, 0, 1895785216039, 0, 11841367945110, 0, 74245791718824
Offset: 1

Views

Author

Keywords

Comments

One of 17 different symmetry types comprising A007173 and A027610 and one of 7 for A371350. Also the number of tetrahedral clusters or polyominoes of the regular tiling with Schläfli symbol {3,3,oo}, both having type E chiral symmetry and n tetrahedral cells. The axis of symmetry connects opposite edge centers of a tetrahedron (31); the order of the symmetry group is 2. Each member of a chiral pair is a reflection but not a rotation of the other. - Robert A. Russell, Mar 22 2024

Crossrefs

Cf. A007173 (oriented), A027610 (unoriented), A371350 (chiral), A001764 (rooted), A047751 (type K), A047752 (type J), A047753 (type I), A047754 (type H), A047758 (type G), A047760 (type F).

Programs

  • Mathematica
    Table[If[OddQ[n],Binomial[(3n-1)/2,(n-1)/2]/(n+1)-If[1==Mod[n,4],Binomial[(3n-3)/4,(n-1)/4]/((n+1))+(4Binomial[(3n+1)/4,(n-1)/4]-If[1==Mod[n,8],4Binomial[(3n-3)/8,(n-1)/8],8Binomial[(3n-7)/8,(n-5)/8]])/(n+3),2Binomial[(3n+3)/4,(n+1)/4]/(n+3)],0]/2,{n,40}] (* Robert A. Russell, Mar 22 2024 *)

Formula

If n=2m+1 then (1/4)*(A047749(n) - 2*A047760(n) - 6*A047758(n) - 2*A047754(n) - 3*A047753(n) - 2*A047752(n) - A047751(n)), otherwise 0.
G.f.: (z^2*G(z^2)^2 - (2+z^2)*G(z^4) - 2*z^2*G(z^4)^2 + 2*(1 + z^2*G(z^8) + z^6*G(z^8)^2)) / (4*z), where G(z) = 1 + z*G(z)^3 is the g.f. for A001764. - Robert A. Russell, Mar 22 2024

A047774 Number of chiral pairs of dissectable polyhedra with n tetrahedral cells and symmetry of type C.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 1, 1, 0, 5, 6, 0, 26, 32, 0, 133, 176, 0, 708, 952, 0, 3861, 5302, 0, 21604, 29960, 0, 123266, 172535, 0, 715221, 1007575, 0, 4206956, 5959656, 0, 25032840, 35622384, 0, 150413348, 214875099, 0, 911379384, 1306303424, 0, 5562367173
Offset: 1

Views

Author

Keywords

Comments

One of 17 different symmetry types comprising A007173 and A027610 and one of 7 for A371350. Also the number of tetrahedral clusters or polyominoes of the regular tiling with Schläfli symbol {3,3,oo}, both having type C chiral symmetry and n tetrahedral cells. The axis of rotational symmetry is the altitude of a tetrahedral cell (32); the order of the symmetry group is 3. Each member of a chiral pair is a reflection but not a rotation of the other. - Robert A. Russell, Mar 25 2024

Crossrefs

Cf. A007173 (oriented), A027610 (unoriented), A371350 (chiral), A001764 (rooted), A047749 (type U), A047751 (type K), A047752 (type J), A047764 (type Q), A047766 (types N|O), A047773 (type D).

Programs

  • Maple
    # T=A001764
    T := proc(n)
        if n < 0 then
            0;
        else
            (3*n)!/n!/(2*n+1)! ;
        end if;
    end proc:
    # U=A047749
    U := proc(n)
        if type(n,'integer') then
            if type(n,'even') then
                T(n/2) ;
            else
                (3*n-1)/(n+1)*T((n-1)/2) ;
            end if;
        else
            0 ;
        end if;
    end proc:
    # V=A047750
    V := proc(n)
        if type(n,'integer') then
            if type(n,'even') then
                2*U(n+1)-U(n) ;
            else
                2*U(n+1) ;
            end if;
        else
            0;
        end if;
    end proc:
    K := proc(n)
        if n < 1 then
            0 ;
        elif n = 1 then
            1;
        else
            U((n-5)/12) ;
        end if;
    end proc:
    J := proc(n)
        if type((n-5)/12,'integer') then
            T((n-5)/12)-K(n) ;
            %/2 ;
        else
            0;
        end if ;
    end proc:
    Q := proc(n)
        if type((n-2)/6,'integer') then
            U((n-2)/6) ;
        else
            0 ;
        end if;
    end proc:
    N := proc(n)
        if type((n-2)/6,'integer') then
            T((n-2)/6)-Q(n) ;
            %/2 ;
        else
            0;
        end if ;
    end proc:
    DD := proc(n)
        2*U((n-1)/3)+V((n-2)/3)-2*K(n)-Q(n) ;
        %/2 ;
    end proc:
    OO := proc(n)
        if type((n-2)/6,'integer') then
            T((n-2)/6)-Q(n) ;
            %/2 ;
        else
            0;
        end if ;
    end proc:
    C := proc(n)
        if n = 1 then
            0;
          elif modp(n,3) = 1 then
            T((n-1)/3)-DD(n) ;
            %/2 ;
        else
            U((2*n-1)/3)-2*DD(n)-4*J(n) -2*K(n)-2*N(n)-2*OO(n)-Q(n) ;
            %/4 ;
        end if;
    end proc:
    seq(C(n),n=1..50) ; # R. J. Mathar, Jul 10 2013
  • Mathematica
    t[n_?IntegerQ] := Binomial[3 n, n] / (2 n + 1); t[_] = 0;
    u[n_] := t[n/2] + ((3n-1)/(n+1)) t[(n-1)/2];
    c[n_] := (2 (t[(n-1)/3] - u[(n-1)/3] - u[(n+1)/3] + u[(n-2)/6] + u[(n-5)/12] - t[(n-5)/12]) + u[(2n-1)/3] - t[(n-2)/6]) / 4;
    Array[c, 46] (* Andrey Zabolotskiy, Jul 30 2023 and Apr 03 2024, using R. J. Mathar's code above *)
    Table[(If[2==Mod[n,3],3Binomial[n-1,(n-2)/3]-If[2==Mod[n,6],3Binomial[(n-2)/2,(n-2)/6],0],0]/(2n+2)-Switch[Mod[n,3],1,If[1==Mod[n,6],3Binomial[(n-1)/2,(n-1)/6],6Binomial[(n-2)/2,(n-4)/6]]/(n+2)-3Binomial[n-1,(n-1)/3]/(2n+1),2,If[2==Mod[n,6],6Binomial[n/2,(n-2)/6]-If[2==Mod[n,12],6Binomial[(n-2)/4,(n-2)/12],12Binomial[n/4-1,(n-8)/12]],3Binomial[(n+1)/2,(n+1)/6]]/(n+4),,0]-If[5==Mod[n,12],6Binomial[(n-5)/4,(n-5)/12]/(n+1)-If[5==Mod[n,24],12Binomial[(n-5)/8,(n-5)/24],24Binomial[(n-9)/8,(n-17)/24]]/(n+7),0])/2,{n,50}] (* _Robert A. Russell, Mar 25 2024 *)

Formula

From Robert A. Russell, Mar 25 2024: (Start)
a(n) = (2*A001764((n-1)/3) + A047749((2n-1)/3) - 2*A047773(n) - 4*A047752(n) - 2*A047751(n) - 4*A047766(n) - A047773(n)) / 4.
G.f.: ((1 - G(z^6))/z + z^2*(G(z^3)^2 - G(z^6))/2 + z*G(z^3) - z*G(z^6) - z^2*G(z^6)^2 - z^4*G(z^6)^2 + z^2*G(z^12) - z^5*G(z^12) + z^8*G(z^12)^2 + z^5*G(z^24) + z^17*G(z^24)^2) / 2, where G(z) = 1 + z*G(z)^3 is the g.f. for A001764. (End)

Extensions

More terms from R. J. Mathar, Jul 10 2013

A047775 Number of dissectable polyhedra with n tetrahedral cells and symmetry of type B.

Original entry on oeis.org

0, 0, 0, 0, 2, 5, 11, 25, 66, 131, 349, 708, 1911, 3856, 10604, 21597, 59961, 123266, 345060, 715198, 2015416, 4206926, 11919257, 25032840, 71246129, 150413234, 429750208, 911379241, 2612614298, 5562367173, 15991792731, 34164355260
Offset: 1

Views

Author

Keywords

Comments

One of 17 different symmetry types comprising A007173 and A027610 and one of 10 for A371351. Also the number of tetrahedral clusters or polyominoes of the regular tiling with Schläfli symbol {3,3,oo}, both having type B achiral symmetry and n tetrahedral cells. The plane of symmetry bisects a tetrahedral cell (321); the order of the symmetry group is 2. An achiral polyomino is identical to its reflection. - Robert A. Russell, Mar 29 2024

Crossrefs

Cf. A047772.
Cf. A007173 (oriented), A027610 (unoriented), A371351 (achiral), A001764 (rooted), A047749 (type U), A047751 (type K), A047753 (type I), A047760 (type F), A047764 (type Q), A047765 (type P), A047773 (type D).

Programs

Formula

a(n) = (1/2)*(A047749(n) - 2*A047773(n) - 2*A047760(n) - A047753(n) - A047751(n) - A047764(n) - A047765(n)).
G.f.: (2 - G(z^4) - G(z^6))/z + (G(z^2) + z*G(z^2)^2 - G(z^4) + z*G(z^4) - z^2*G(z^4)^2 + z^2*G(z^6) + z^2*G(z^12) + z^8*G(z^12)^2) / 2 + z - z*G(z^4)^2 - z*G(z^6) - z^2*G(z^6)^2 - z^4*G(z^6)^2 + z^5*G(z^24) + z^17*G(z^24)^2, where G(z) = 1 + z*G(z)^3 is the g.f. for A001764. - Robert A. Russell, Mar 29 2024

A369315 Number of chiral pairs of polyominoes composed of n square cells of the hyperbolic regular tiling with Schläfli symbol {4,oo}.

Original entry on oeis.org

2, 9, 48, 231, 1188, 6114, 32448, 175032, 962472, 5370524, 30377504, 173816313, 1004823816, 5861490300, 34468767840, 204161269620, 1217143807770, 7299003615537, 44005594027200, 266608363362900
Offset: 4

Views

Author

Robert A. Russell, Jan 19 2024

Keywords

Comments

A stereographic projection of the {4,oo} tiling on the Poincaré disk can be obtained via the Christensson link. Each member of a chiral pair is a reflection but not a rotation of the other.

Examples

			 __ __ __    __ __ __     __ __          __ __
|__|__|__|  |__|__|__|   |__|__|__    __|__|__|  a(4) = 2.
      |__|  |__|            |__|__|  |__|__|
		

Crossrefs

Polyominoes: A005034 (oriented), A005036 (unoriented), A047749 (achiral), A385149 (asymmetric), A001764 (rooted), A369314 {3,oo}.

Programs

  • Mathematica
    p=4; Table[(Binomial[(p-1)n,n]/(((p-2)n+1)((p-2)n+2))-If[OddQ[n],If[OddQ[p],Binomial[(p-1)n/2,(n-1)/2]/n,(p+1)Binomial[((p-1)n-1)/2,(n-1)/2]/((p-2)n+2)-Binomial[((p-1)n+1)/2,(n-1)/2]/((p-1)n+1)],Binomial[(p-1)n/2,n/2]/((p-2)n+2)]+DivisorSum[GCD[p,n-1],EulerPhi[#]Binomial[((p-1)n+1)/#,(n-1)/#]/((p-1)n+1)&,#>1&])/2,{n,4,30}]
    Table[(3Binomial[3n,n]/(2n+1)-Binomial[3n+1,n]/(n+1)-If[OddQ[n],6Binomial[(3n-1)/2,(n-1)/2]-If[1==Mod[n,4],4Binomial[(3n-3)/4,(n-1)/4],0],2Binomial[3n/2,n/2]]/(n+1))/8,{n,0,30}] (* Robert A. Russell, Jun 19 2025 *)

Formula

a(n) = A005034(n) - A005036(n) = (A005034(n) - A047749(n)) / 2 = A005036(n) - A047749(n).
G.f.: (3*G(z) - G(z)^2 - 2*G(z^2) - 3z*G(z^2)^2 + 2z*G(z^4)) / 8, where G(z)=1+z*G(z)^3 is the g.f. for A001764. - Robert A. Russell, Jun 19 2025
Previous Showing 11-20 of 49 results. Next