Original entry on oeis.org
1, 2, 7, 44, 401, 4682, 66431, 1111112, 21435889, 469070942, 11488207655, 311505013052, 9267595563617, 300239975158034, 10523614159962559, 396861212733968144, 16024522975978953761, 689852631578947368422, 31544039619835776489479
Offset: 0
A047849
a(n) = (4^n + 2)/3.
Original entry on oeis.org
1, 2, 6, 22, 86, 342, 1366, 5462, 21846, 87382, 349526, 1398102, 5592406, 22369622, 89478486, 357913942, 1431655766, 5726623062, 22906492246, 91625968982, 366503875926, 1466015503702, 5864062014806, 23456248059222, 93824992236886, 375299968947542
Offset: 0
a(2) = 6 for the number of round trips in C_6 from the six round trips from, say, vertex no. 1: 12121, 16161, 12161, 16121, 12321 and 16561. - _Wolfdieter Lang_, Nov 08 2011
- Bruno Berselli, Table of n, a(n) for n = 0..1000
- Jeffrey M. Barnes, Georgia Benkart, and Tom Halverson, McKay centralizer algebras. Proc. Lond. Math. Soc. (3) 112, No. 2, 375-414 (2016).
- Christian Bean, Finding structure in permutation sets, Ph.D. Dissertation, Reykjavík University, School of Computer Science, 2018.
- Georgia Benkart and Tom Halverson, McKay Centralizer Algebras, hal-02173744 [math.CO], 2020.
- Bruno Berselli, A description of the recursive method in Comments lines: website Matem@ticamente (in Italian).
- Paul Bradley and Peter Rowley, Orbits on k-subsets of 2-transitive Simple Lie-type Groups, Algebraic Combinatorics, Volume 5 (2022) no. 1, pp. 37-51.
- Pascal Caron, Jean-Gabriel Luque, and Bruno Patrou, A combinatorial approach for the state complexity of the Shuffle product, arXiv:1905.08120 [cs.FL], 2019.
- Gi-Sang Cheon, Ji-Hwan Jung, Sergey Kitaev, and Seyed Ahmad Mojallal, Riordan graphs I: structural properties, Linear Algebra and its Applications, 579. pp. 89-135, Prop. 2.8. (2019).
- B. N. Cooperstein and E. E. Shult, A note on embedding and generating dual polar spaces. Adv. Geom. 1 (2001), 37-48. See Conjecture 5.5.
- Kittitat Iamthong, Ji-Hwan Jung, and Sergey Kitaev, Encoding labelled p-Riordan graphs by words and pattern-avoiding permutations, arXiv:2009.01410 [math.CO], 2020.
- D. Kremer and W. C. Shiu, Finite transition matrices for permutations avoiding pairs of length four patterns, Discrete Mathematics 268 (2003), 171-183.
- T. Mansour and A. Robertson, Refined restricted permutations avoiding subsets of patterns of length three, arXiv:math/0204005 [math.CO], 2002.
- Wikipedia, Permutation classes avoiding two patterns of length 4.
- Index entries for linear recurrences with constant coefficients, signature (5,-4).
Cf.
A000302,
A001045,
A002450,
A007583,
A024493,
A047848,
A078008,
A121314,
A131708,
A178789,
A199571.
-
[(4^n+2)/3: n in [0..30]]; // Vincenzo Librandi, Dec 07 2015
-
(4^Range[0,30] +2)/3 (* or *) LinearRecurrence[{5,-4},{1,2},30] (* Harvey P. Dale, Nov 27 2015 *)
-
a(n)=(4^n+2)/3;
-
def A047849(n): return (pow(4, n) +2)//3
print([A047849(n) for n in range(41)]) # G. C. Greubel, Jan 17 2025
-
def A047849(n): return ((1 << (2 * n)) + 2) // 3 # John Reimer Morales, Aug 05 2025
A047850
a(n) = (5^n + 3)/4.
Original entry on oeis.org
1, 2, 7, 32, 157, 782, 3907, 19532, 97657, 488282, 2441407, 12207032, 61035157, 305175782, 1525878907, 7629394532, 38146972657, 190734863282, 953674316407, 4768371582032, 23841857910157, 119209289550782, 596046447753907
Offset: 0
A123490
Triangle whose k-th column satisfies a(n) = (k+3)*a(n-1)-(k+2)*a(n-2).
Original entry on oeis.org
1, 2, 1, 4, 2, 1, 8, 5, 2, 1, 16, 14, 6, 2, 1, 32, 41, 22, 7, 2, 1, 64, 122, 86, 32, 8, 2, 1, 128, 365, 342, 157, 44, 9, 2, 1, 256, 1094, 1366, 782, 260, 58, 10, 2, 1, 512, 3281, 5462, 3907, 1556, 401, 74, 11, 2, 1, 1024, 9842, 21846, 19532, 9332, 2802, 586, 92, 12, 2, 1
Offset: 0
Triangle begins
1;
2, 1;
4, 2, 1;
8, 5, 2, 1;
16, 14, 6, 2, 1;
32, 41, 22, 7, 2, 1;
64, 122, 86, 32, 8, 2, 1;
128, 365, 342, 157, 44, 9, 2, 1;
256, 1094, 1366, 782, 260, 58, 10, 2, 1;
512, 3281, 5462, 3907, 1556, 401, 74, 11, 2, 1;
1024, 9842, 21846, 19532, 9332, 2802, 586, 92, 12, 2, 1;
-
[((k+2)^(n-k) +k)/(k+1): k in [0..n], n in [0..12]]; // G. C. Greubel, Jun 15 2021
-
Table[((k+2)^(n-k) +k)/(k+1), {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, Oct 14 2017 *)
-
for(n=0, 10, for(k=0,n, print1(((k+2)^(n-k)+k)/(k+1), ", "))) \\ G. C. Greubel, Oct 14 2017
-
flatten([[((k+2)^(n-k) +k)/(k+1) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Jun 15 2021
Comments
. - Sean A. Irvine, Nov 04 2024