cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 61-70 of 147 results. Next

A384889 Number of subsets of {1..n} with all equal lengths of maximal anti-runs (increasing by more than 1).

Original entry on oeis.org

1, 2, 4, 8, 14, 23, 37, 59, 93, 146, 230, 365, 584, 940, 1517, 2450, 3959, 6404, 10373, 16822, 27298, 44297, 71843, 116429, 188550, 305200, 493930, 799422, 1294108, 2095291, 3392736, 5493168, 8892148, 14390372, 23282110, 37660759, 60914308, 98528312, 159386110
Offset: 0

Views

Author

Gus Wiseman, Jun 18 2025

Keywords

Examples

			The subset {3,6,7,9,10,12} has maximal anti-runs ((3,6),(7,9),(10,12)), with lengths (2,2,2), so is counted under a(12).
The a(0) = 1 through a(4) = 14 subsets:
  {}  {}   {}     {}       {}
      {1}  {1}    {1}      {1}
           {2}    {2}      {2}
           {1,2}  {3}      {3}
                  {1,2}    {4}
                  {1,3}    {1,2}
                  {2,3}    {1,3}
                  {1,2,3}  {1,4}
                           {2,3}
                           {2,4}
                           {3,4}
                           {1,2,3}
                           {2,3,4}
                           {1,2,3,4}
		

Crossrefs

For runs instead of anti-runs we have A243815, distinct A384175, complement A384176.
For distinct instead or equal lengths we have A384177, ranks A384879.
For partitions instead of subsets we have A384888.
A034296 counts flat or gapless partitions, ranks A066311 or A073491.
A034839 counts subsets by number of maximal runs, for strict partitions A116674.
A047966 counts uniform partitions (equal multiplicities), ranks A072774.
A384893 counts subsets by number of maximal anti-runs, for partitions A268193, A384905.

Programs

  • Mathematica
    Table[Length[Select[Subsets[Range[n]],SameQ@@Length/@Split[#,#2!=#1+1&]&]],{n,0,10}]
  • PARI
    lista(n)=Vec(sum(i=1,(n+1)\2,1/(1-x^(2*i-1)/(1-x)^(i-1))-1,1-x+O(x*x^n))/(1-x)^2) \\ Christian Sievers, Jun 20 2025

Formula

G.f.: ( Sum_{i>=1} (1/(1-x^(2*i-1)/(1-x)^(i-1))-1) + 1-x ) / (1-x)^2. - Christian Sievers, Jun 21 2025

Extensions

a(21) and beyond from Christian Sievers, Jun 20 2025

A340788 Heinz numbers of integer partitions of negative rank.

Original entry on oeis.org

4, 8, 12, 16, 18, 24, 27, 32, 36, 40, 48, 54, 60, 64, 72, 80, 81, 90, 96, 100, 108, 112, 120, 128, 135, 144, 150, 160, 162, 168, 180, 192, 200, 216, 224, 225, 240, 243, 250, 252, 256, 270, 280, 288, 300, 320, 324, 336, 352, 360, 375, 378, 384, 392, 400, 405
Offset: 1

Views

Author

Gus Wiseman, Jan 29 2021

Keywords

Comments

The Heinz number of a partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k), giving a bijective correspondence between positive integers and integer partitions.
The Dyson rank of a nonempty partition is its maximum part minus its length. The rank of an empty partition is undefined.

Examples

			The sequence of partitions together with their Heinz numbers begins:
      4: (1,1)             80: (3,1,1,1,1)
      8: (1,1,1)           81: (2,2,2,2)
     12: (2,1,1)           90: (3,2,2,1)
     16: (1,1,1,1)         96: (2,1,1,1,1,1)
     18: (2,2,1)          100: (3,3,1,1)
     24: (2,1,1,1)        108: (2,2,2,1,1)
     27: (2,2,2)          112: (4,1,1,1,1)
     32: (1,1,1,1,1)      120: (3,2,1,1,1)
     36: (2,2,1,1)        128: (1,1,1,1,1,1,1)
     40: (3,1,1,1)        135: (3,2,2,2)
     48: (2,1,1,1,1)      144: (2,2,1,1,1,1)
     54: (2,2,2,1)        150: (3,3,2,1)
     60: (3,2,1,1)        160: (3,1,1,1,1,1)
     64: (1,1,1,1,1,1)    162: (2,2,2,2,1)
     72: (2,2,1,1,1)      168: (4,2,1,1,1)
		

Crossrefs

Note: A-numbers of Heinz-number sequences are in parentheses below.
These partitions are counted by A064173.
The odd case is A101707 is (A340929).
The even case is A101708 is (A340930).
The positive version is (A340787).
A001222 counts prime factors.
A061395 selects the maximum prime index.
A072233 counts partitions by sum and length.
A168659 counts partitions whose length is divisible by maximum.
A200750 counts partitions whose length and maximum are relatively prime.
- Rank -
A047993 counts partitions of rank 0 (A106529).
A063995/A105806 count partitions by Dyson rank.
A064174 counts partitions of nonnegative/nonpositive rank (A324562/A324521).
A101198 counts partitions of rank 1 (A325233).
A257541 gives the rank of the partition with Heinz number n.
A324518 counts partitions with rank equal to greatest part (A324517).
A324520 counts partitions with rank equal to least part (A324519).
A340601 counts partitions of even rank (A340602), with strict case A117192.
A340692 counts partitions of odd rank (A340603), with strict case A117193.

Programs

  • Mathematica
    Select[Range[2,100],PrimePi[FactorInteger[#][[-1,1]]]
    				

Formula

For all terms A061395(a(n)) < A001222(a(n)).

A351203 Number of integer partitions of n of whose permutations do not all have distinct runs.

Original entry on oeis.org

0, 0, 0, 0, 1, 2, 3, 6, 11, 16, 24, 36, 52, 73, 101, 135, 184, 244, 321, 418, 543, 694, 889, 1127, 1427, 1789, 2242, 2787, 3463, 4276, 5271, 6465, 7921, 9655, 11756, 14254, 17262, 20830, 25102, 30152, 36172, 43270, 51691, 61594, 73300, 87023, 103189, 122099, 144296, 170193, 200497
Offset: 0

Views

Author

Gus Wiseman, Feb 12 2022

Keywords

Examples

			The a(4) = 1 through a(9) = 16 partitions:
  (211)  (221)  (411)    (322)    (332)      (441)
         (311)  (2211)   (331)    (422)      (522)
                (21111)  (511)    (611)      (711)
                         (3211)   (3221)     (3321)
                         (22111)  (3311)     (4221)
                         (31111)  (4211)     (4311)
                                  (22211)    (5211)
                                  (32111)    (22221)
                                  (41111)    (32211)
                                  (221111)   (33111)
                                  (2111111)  (42111)
                                             (51111)
                                             (222111)
                                             (321111)
                                             (2211111)
                                             (3111111)
For example, the partition x = (2,1,1,1,1) has the permutation (1,1,2,1,1), with runs (1,1), (2), (1,1), which are not all distinct, so x is counted under a(6).
		

Crossrefs

The version for run-lengths instead of runs is A144300.
The version for normal multisets is A283353.
The Heinz numbers of these partitions are A351201.
The complement is counted by A351204.
A005811 counts runs in binary expansion.
A044813 lists numbers whose binary expansion has distinct run-lengths.
A059966 counts Lyndon compositions, necklaces A008965, aperiodic A000740.
A098859 counts partitions with distinct multiplicities, ordered A242882.
A297770 counts distinct runs in binary expansion.
A003242 counts anti-run compositions, ranked by A333489.
Counting words with all distinct runs:
- A351013 = compositions, for run-lengths A329739, ranked by A351290.
- A351016 = binary words, for run-lengths A351017.
- A351018 = binary expansions, for run-lengths A032020, ranked by A175413.
- A351200 = patterns, for run-lengths A351292.
- A351202 = permutations of prime factors.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],MemberQ[Permutations[#],_?(!UnsameQ@@Split[#]&)]&]],{n,0,15}]
  • Python
    from sympy.utilities.iterables import partitions
    from itertools import permutations, groupby
    from collections import Counter
    def A351203(n):
        c = 0
        for s, p in partitions(n,size=True):
            for q in permutations(Counter(p).elements(),s):
                if max(Counter(tuple(g) for k, g in groupby(q)).values(),default=0) > 1:
                    c += 1
                    break
        return c # Chai Wah Wu, Oct 16 2023

Formula

a(n) = A000041(n) - A351204(n). - Andrew Howroyd, Jan 27 2024

Extensions

a(26) onwards from Andrew Howroyd, Jan 27 2024

A326851 Number of strict integer partitions of n whose length and maximum both divide n.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 4, 1, 1, 2, 3, 1, 5, 1, 6, 1, 1, 1, 16, 1, 1, 1, 12, 1, 33, 1, 15, 1, 1, 1, 60, 1, 1, 1, 51, 1, 81, 1, 31, 57, 1, 1, 216, 1, 55, 1, 45, 1, 230, 1, 223, 1, 1, 1, 800, 1, 1, 314, 273, 1, 607, 1, 81, 1, 315, 1, 2404, 1, 1, 319
Offset: 0

Views

Author

Gus Wiseman, Jul 26 2019

Keywords

Examples

			The a(6) = 2 through a(24) = 16 partitions (1 terms not shown):
  6       12        15          16        18      20           24
  3,2,1   6,4,2     5,4,3,2,1   8,4,3,1   9,5,4   10,5,3,2     12,7,5
          6,5,1                 8,5,2,1   9,6,3   10,5,4,1     12,8,4
          6,3,2,1                         9,7,2   10,6,3,1     12,9,3
                                          9,8,1   10,7,2,1     12,10,2
                                                  10,4,3,2,1   12,11,1
                                                               8,7,5,4
                                                               8,7,6,3
                                                               12,5,4,3
                                                               12,6,4,2
                                                               12,6,5,1
                                                               12,7,3,2
                                                               12,7,4,1
                                                               12,8,3,1
                                                               12,9,2,1
                                                               8,6,4,3,2,1
		

Crossrefs

The non-strict case is A326843.

Programs

  • Mathematica
    Table[If[n==0,1,Length[Select[IntegerPartitions[n],UnsameQ@@#&&Divisible[n,Max[#]]&&Divisible[n,Length[#]]&]]],{n,0,30}]

A340598 Number of balanced set partitions of {1..n}.

Original entry on oeis.org

0, 1, 0, 3, 3, 10, 60, 210, 700, 3556, 19845, 105567, 550935, 3120832, 19432413, 127949250, 858963105, 5882733142, 41636699676, 307105857344, 2357523511200, 18694832699907, 152228641035471, 1270386473853510, 10872532998387918, 95531590347525151
Offset: 0

Views

Author

Gus Wiseman, Jan 20 2021

Keywords

Comments

A set partition is balanced if it has exactly as many blocks as the greatest size of a block.

Examples

			The a(1) = 1 through a(5) = 10 balanced set partitions (empty column indicated by dot):
  {{1}}  .  {{1},{2,3}}  {{1,2},{3,4}}  {{1},{2},{3,4,5}}
            {{1,2},{3}}  {{1,3},{2,4}}  {{1},{2,3,4},{5}}
            {{1,3},{2}}  {{1,4},{2,3}}  {{1,2,3},{4},{5}}
                                        {{1},{2,3,5},{4}}
                                        {{1,2,4},{3},{5}}
                                        {{1},{2,4,5},{3}}
                                        {{1,2,5},{3},{4}}
                                        {{1,3,4},{2},{5}}
                                        {{1,3,5},{2},{4}}
                                        {{1,4,5},{2},{3}}
		

Crossrefs

The unlabeled version is A047993 (A106529).
A000110 counts set partitions.
A000670 counts ordered set partitions.
A113547 counts set partitions by maximin.
Other balance-related sequences:
- A010054 counts balanced strict integer partitions (A002110).
- A098124 counts balanced integer compositions.
- A340596 counts co-balanced factorizations.
- A340599 counts alt-balanced factorizations.
- A340600 counts unlabeled balanced multiset partitions.
- A340653 counts balanced factorizations.

Programs

  • Mathematica
    sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
    Table[Length[Select[sps[Range[n]],Length[#]==Max@@Length/@#&]],{n,0,8}]
  • PARI
    \\ D(n,k) counts balanced set partitions with k blocks.
    D(n,k)={my(t=sum(i=1, k, x^i/i!) + O(x*x^n)); n!*polcoef(t^k - (t-x^k/k!)^k, n)/k!}
    a(n)={sum(k=sqrtint(n), (n+1)\2, D(n,k))} \\ Andrew Howroyd, Mar 14 2021

Extensions

Terms a(12) and beyond from Andrew Howroyd, Mar 14 2021

A340600 Number of non-isomorphic balanced multiset partitions of weight n.

Original entry on oeis.org

1, 1, 0, 4, 7, 16, 52, 206, 444, 1624, 5462, 19188, 62890, 215367, 765694, 2854202, 10634247, 39842786, 150669765, 581189458, 2287298588, 9157598354, 37109364812, 151970862472, 629048449881, 2635589433705, 11184718653563, 48064965080106, 208988724514022, 918639253237646, 4079974951494828
Offset: 0

Views

Author

Gus Wiseman, Feb 05 2021

Keywords

Comments

We define a multiset partition to be balanced if it has exactly as many parts as the greatest size of a part.

Examples

			Non-isomorphic representatives of the a(1) = 1 through a(5) = 16 multiset partitions (empty column indicated by dot):
  {{1}}  .  {{1},{1,1}}  {{1,1},{1,1}}  {{1},{1},{1,1,1}}
            {{1},{2,2}}  {{1,1},{2,2}}  {{1},{1},{1,2,2}}
            {{1},{2,3}}  {{1,2},{1,2}}  {{1},{1},{2,2,2}}
            {{2},{1,2}}  {{1,2},{2,2}}  {{1},{1},{2,3,3}}
                         {{1,2},{3,3}}  {{1},{1},{2,3,4}}
                         {{1,2},{3,4}}  {{1},{2},{1,2,2}}
                         {{1,3},{2,3}}  {{1},{2},{2,2,2}}
                                        {{1},{2},{2,3,3}}
                                        {{1},{2},{3,3,3}}
                                        {{1},{2},{3,4,4}}
                                        {{1},{2},{3,4,5}}
                                        {{1},{3},{2,3,3}}
                                        {{1},{4},{2,3,4}}
                                        {{2},{2},{1,2,2}}
                                        {{2},{3},{1,2,3}}
                                        {{3},{3},{1,2,3}}
		

Crossrefs

The version for partitions is A047993.
The co-balanced version is A319616.
The cross-balanced version is A340651.
The twice-balanced version is A340652.
The version for factorizations is A340653.
A007716 counts non-isomorphic multiset partitions.
A007718 counts non-isomorphic connected multiset partitions.
A316980 counts non-isomorphic strict multiset partitions.
Other balance-related sequences:
- A098124 counts balanced compositions.
- A106529 lists balanced numbers.
- A340596 counts co-balanced factorizations.
- A340597 lists numbers with an alt-balanced factorization.
- A340598 counts balanced set partitions.
- A340599 counts alt-balanced factorizations.

Programs

  • PARI
    \\ See A340652 for G.
    seq(n)={Vec(1 + sum(k=1,n,polcoef(G(n,n,k,y),k,y) - polcoef(G(n,n,k-1,y),k,y)))} \\ Andrew Howroyd, Jan 15 2024

Extensions

a(11) onwards from Andrew Howroyd, Jan 15 2024

A340605 Heinz numbers of integer partitions of even positive rank.

Original entry on oeis.org

5, 11, 14, 17, 21, 23, 26, 31, 35, 38, 39, 41, 44, 47, 49, 57, 58, 59, 65, 66, 67, 68, 73, 74, 83, 86, 87, 91, 92, 95, 97, 99, 102, 103, 104, 106, 109, 110, 111, 122, 124, 127, 129, 133, 137, 138, 142, 143, 145, 149, 152, 153, 154, 156, 157, 158, 159, 164, 165
Offset: 1

Views

Author

Gus Wiseman, Jan 21 2021

Keywords

Comments

The Dyson rank of a nonempty partition is its maximum part minus its number of parts. The rank of an empty partition is 0.
The Heinz number of a partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k). This gives a bijective correspondence between positive integers and integer partitions.

Examples

			The sequence of partitions with their Heinz numbers begins:
      5: (3)         57: (8,2)       97: (25)
     11: (5)         58: (10,1)      99: (5,2,2)
     14: (4,1)       59: (17)       102: (7,2,1)
     17: (7)         65: (6,3)      103: (27)
     21: (4,2)       66: (5,2,1)    104: (6,1,1,1)
     23: (9)         67: (19)       106: (16,1)
     26: (6,1)       68: (7,1,1)    109: (29)
     31: (11)        73: (21)       110: (5,3,1)
     35: (4,3)       74: (12,1)     111: (12,2)
     38: (8,1)       83: (23)       122: (18,1)
     39: (6,2)       86: (14,1)     124: (11,1,1)
     41: (13)        87: (10,2)     127: (31)
     44: (5,1,1)     91: (6,4)      129: (14,2)
     47: (15)        92: (9,1,1)    133: (8,4)
     49: (4,4)       95: (8,3)      137: (33)
		

Crossrefs

Note: Heinz numbers are given in parentheses below.
Allowing any positive rank gives A064173 (A340787).
The odd version is counted by A101707 (A340604).
These partitions are counted by A101708.
The not necessarily positive case is counted by A340601 (A340602).
A001222 counts prime indices.
A061395 gives maximum prime index.
A072233 counts partitions by sum and length.
- Rank -
A047993 counts partitions of rank 0 (A106529).
A064173 counts partitions of negative rank (A340788).
A064174 counts partitions of nonnegative rank (A324562).
A064174 (also) counts partitions of nonpositive rank (A324521).
A101198 counts partitions of rank 1 (A325233).
A257541 gives the rank of the partition with Heinz number n.
A340692 counts partitions of odd rank (A340603).
- Even -
A027187 counts partitions of even length (A028260).
A027187 (also) counts partitions of even maximum (A244990).
A035363 counts partitions into even parts (A066207).
A058696 counts partitions of even numbers (A300061).
A067661 counts strict partitions of even length (A030229).
A339846 counts factorizations of even length.

Programs

  • Mathematica
    rk[n_]:=PrimePi[FactorInteger[n][[-1,1]]]-PrimeOmega[n];
    Select[Range[100],EvenQ[rk[#]]&&rk[#]>0&]

Formula

A061395(a(n)) - A001222(a(n)) is even and positive.

A349158 Heinz numbers of integer partitions with exactly one odd part.

Original entry on oeis.org

2, 5, 6, 11, 14, 15, 17, 18, 23, 26, 31, 33, 35, 38, 41, 42, 45, 47, 51, 54, 58, 59, 65, 67, 69, 73, 74, 77, 78, 83, 86, 93, 95, 97, 98, 99, 103, 105, 106, 109, 114, 119, 122, 123, 126, 127, 135, 137, 141, 142, 143, 145, 149, 153, 157, 158, 161, 162, 167, 174
Offset: 1

Views

Author

Gus Wiseman, Nov 12 2021

Keywords

Comments

The Heinz number of a partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k), so these are numbers with exactly one odd prime index. These are also partitions whose conjugate partition has alternating sum equal to 1.
Numbers that are product of a term of A031368 and a term of A066207. - Antti Karttunen, Nov 13 2021

Examples

			The terms and corresponding partitions begin:
      2: (1)         42: (4,2,1)       86: (14,1)
      5: (3)         45: (3,2,2)       93: (11,2)
      6: (2,1)       47: (15)          95: (8,3)
     11: (5)         51: (7,2)         97: (25)
     14: (4,1)       54: (2,2,2,1)     98: (4,4,1)
     15: (3,2)       58: (10,1)        99: (5,2,2)
     17: (7)         59: (17)         103: (27)
     18: (2,2,1)     65: (6,3)        105: (4,3,2)
     23: (9)         67: (19)         106: (16,1)
     26: (6,1)       69: (9,2)        109: (29)
     31: (11)        73: (21)         114: (8,2,1)
     33: (5,2)       74: (12,1)       119: (7,4)
     35: (4,3)       77: (5,4)        122: (18,1)
     38: (8,1)       78: (6,2,1)      123: (13,2)
     41: (13)        83: (23)         126: (4,2,2,1)
		

Crossrefs

These partitions are counted by A000070 up to 0's.
Allowing no odd parts gives A066207, counted by A000041 up to 0's.
Requiring all odd parts gives A066208, counted by A000009.
These are the positions of 1's in A257991.
The even prime indices are counted by A257992.
The conjugate partitions are ranked by A345958.
Allowing at most one odd part gives A349150, counted by A100824.
A047993 ranks balanced partitions, counted by A106529.
A056239 adds up prime indices, row sums of A112798.
A122111 is a representation of partition conjugation.
A316524 gives the alternating sum of prime indices (reverse: A344616).
A325698 ranks partitions with as many even as odd parts, counted by A045931.
A340604 ranks partitions of odd positive rank, counted by A101707.
A340932 ranks partitions whose least part is odd, counted by A026804.
A349157 ranks partitions with as many even parts as odd conjugate parts.

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Select[Range[100],Count[primeMS[#],_?OddQ]==1&]

A063746 Triangle read by rows giving number of partitions of k (k=0 .. n^2) with Ferrers plot fitting in an n X n box.

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 2, 3, 3, 3, 3, 2, 1, 1, 1, 1, 2, 3, 5, 5, 7, 7, 8, 7, 7, 5, 5, 3, 2, 1, 1, 1, 1, 2, 3, 5, 7, 9, 11, 14, 16, 18, 19, 20, 20, 19, 18, 16, 14, 11, 9, 7, 5, 3, 2, 1, 1, 1, 1, 2, 3, 5, 7, 11, 13, 18, 22, 28, 32, 39, 42, 48, 51, 55, 55, 58, 55, 55, 51, 48, 42, 39, 32, 28
Offset: 0

Views

Author

Wouter Meeussen, Aug 14 2001

Keywords

Comments

Seems to approximate a Gaussian distribution, the sum of all 1+n^2 terms in a row equals the central binomial coefficients.
a(n,k) is the number of sequences of n 0's and n 1's having major index equal to k (the major index is the sum of the positions of the 1's that are immediately followed by 0's). Equivalently, a(n,k) is the number of Grand Dyck paths of length 2n for which the sum of the positions of the valleys is k. Example: a(3,7)=2 because the only sequences of three 0's and three 1's with major index 7 are 010110 and 110010. The corresponding Grand Dyck paths are obtained by replacing a 0 by a U=(1,1) step and a 1 by a D=(1,-1) step. - Emeric Deutsch, Oct 02 2007
Also, number of n-multisets in [0..n] whose elements sum up to n. - M. F. Hasler, Apr 12 2012
Let P be the poset [n] X [n] ordered by the product order. Let J(P) be the set of all order ideals of P, ordered by inclusion. Then J(P) is a finite sublattice of Young's lattice and T(n,k) is the number of elements in J(P) that have rank k. - Geoffrey Critzer, Mar 26 2020

Examples

			From _M. F. Hasler_, Apr 12 2012: (Start)
The table reads:
n=0: 1  _  (k=0)
n=1: 1 1  _  (k=0..1)
n=2: 1 1 2 1 1  _  (k=0..4)
n=3: 1 1 2 3 3 3 3  2  1  1  _  (k=0..9)
n=4: 1 1 2 3 5 5 7  7  8  7  7  5  5  3  2  1  1  _  (k=0..16)
n=5: 1 1 2 3 5 7 9 11 14 16 18 19 20 20 19 18 16 ...  _  (k=0..25)
etc. (End)
Cycle index of S(3) is (1/6)*(x(1)^3+3*x(1)*x(2)+2*x(3)), so g.f. for 3rd row is (1/6)*((1+x+x^2+x^3)^3+3*(1+x+x^2+x^3)*(1+x^2+x^4+x^6)+2*(1+x^3+x^6+x^9)) = x^9+x^8+2*x^7+3*x^6+3*x^5+3*x^4+3*x^3+2*x^2+x+1.
a(3,7)=2 because the only partitions of 7 with Ferrers plot fitting into a 3 X 3 box are [3,3,1] and [3,2,2].
		

References

  • G. E. Andrews and K. Eriksson, Integer partitions, Cambridge Univ. Press, 2004, pp. 67-69.
  • D. M. Bressoud, Proofs and Confirmations, Camb. Univ. Press, 1999; exercise 3.2.3.
  • A. V. Yurkin, New binomial and new view on light theory, (book), 2013, 78 pages, no publisher listed.

Crossrefs

Row lengths are given by A002522. - M. F. Hasler, Apr 14 2012
Antidiagonal sums are given by A260894.
Row sums give A000984.

Programs

  • Maple
    for n from 0 to 15 do QBR[n]:=sum(q^i,i=0..n-1) od: for n from 0 to 15 do QFAC[n]:=product(QBR[j],j=1..n) od: qbin:=(n,k)->QFAC[n]/QFAC[k]/QFAC[n-k]: for n from 0 to 7 do P[n]:=sort(expand(simplify(qbin(2*n,n)))) od: for n from 0 to 7 do seq(coeff(P[n],q,j),j=0..n^2) od; # yields sequence in triangular form - Emeric Deutsch, Apr 23 2007
    # second Maple program:
    b:= proc(n, i, k) option remember;
          `if`(n=0, 1, `if`(i<1 or k<1, 0, b(n, i-1, k)+
          `if`(i>n, 0, b(n-i, i, k-1))))
        end:
    T:= n-> seq(b(k, min(n, k), n), k=0..n^2):
    seq(T(n), n=0..8); # Alois P. Heinz, Apr 05 2012
  • Mathematica
    Table[nn=n^2;CoefficientList[Series[Product[(1-x^(n+i))/(1-x^i),{i,1,n}],{x,0,nn}],x],{n,0,6}]//Grid (* Geoffrey Critzer, Sep 27 2013 *)
    Table[CoefficientList[QBinomial[2n,n,q] // FunctionExpand, q], {n,0,6}] // Flatten (* Peter Luschny, Jul 22 2016 *)
    b[n_, i_, k_] := b[n, i, k] = If[n == 0, 1, If[i < 1 || k < 1, 0, b[n, i - 1, k] + If[i > n, 0, b[n - i, i, k - 1]]]];
    T[n_] := Table[b[k, Min[n, k], n], {k, 0, n^2}];
    Table[T[n], {n, 0, 8}] // Flatten (* Jean-François Alcover, Nov 27 2020, after Alois P. Heinz *)
  • PARI
    T(n,k)=polcoeff(prod(i=0,n,sum(j=0,n,x^(j*i*(n^2+n+1)+j),O(x^(k*(n^2+n+1)+n+1)))),k*(n^2+n+1)+n)  /* Based on a more general formula due to R. Gerbicz. M. F. Hasler, Apr 12 2012 */

Formula

Table[T[k, n, n], {n, 0, 9}, {k, 0, n^2}] with T[ ] defined as in A047993.
G.f.: Consider a function; f(n) = 1 + sum(i_1=1, n, sum(i_2=0, i_1, ..., sum(i_n=0, i_(n-1), x^(sum(j=1, n, i_j))*(1+...+x^i_n))...)) Then the GF is f(1)+x^3.f(2)+x^8.f(3)+..., where after x^3 the increase is n^2+1 from f(n). - Jon Perry, Jul 13 2004
G.f. for n-th row is obtained if we set x(i) = 1+x^i+x^(2*i)+...+x^(n*i), i=1, 2, ..., n, in the cycle index Z(S(n);x(1), x(2), ..., x(n)) of the symmetric group S(n) of degree n. - Vladeta Jovovic, Dec 17 2004
G.f. of row n: the q-binomial coefficient [2n,n]. - Emeric Deutsch, Apr 23 2007
T(n,k)=1 for k=0,1,n^2-1,n^2. For all m>n, T(m,n)=T(n,n)=A000041(n), i.e., below the diagonal the columns remain constant, because there cannot be more than n nonzero elements with sum <= n. - M. F. Hasler, Apr 12 2012
T(n,2n) = A128552(n-2). - Geoffrey Critzer, Sep 27 2013
From Alois P. Heinz, Jan 09 2025: (Start)
Sum_{k=0..n} T(n,k) = A000070(n).
Sum_{k=0..n} k * T(n,k) = A182738(n).
Sum_{k=0..n^2} k * T(n,k) = A002544(n-1) for n>=1.
Sum_{k=0..n^2} (-1)^k * T(n,k) = A126869(n). (End)

A326848 Heinz numbers of integer partitions of m >= 0 whose length times maximum is a multiple of m.

Original entry on oeis.org

1, 2, 3, 4, 5, 7, 8, 9, 11, 13, 16, 17, 19, 23, 25, 27, 28, 29, 31, 32, 37, 40, 41, 43, 47, 49, 53, 59, 61, 64, 67, 71, 73, 78, 79, 81, 83, 84, 89, 97, 101, 103, 107, 109, 113, 121, 125, 127, 128, 131, 137, 139, 149, 151, 157, 163, 167, 169, 171, 173, 179, 181
Offset: 1

Views

Author

Gus Wiseman, Jul 26 2019

Keywords

Comments

The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k).
The enumeration of these partitions by sum is given by A326849.

Examples

			The sequence of terms together with their prime indices begins:
    1: {}
    2: {1}
    3: {2}
    4: {1,1}
    5: {3}
    7: {4}
    8: {1,1,1}
    9: {2,2}
   11: {5}
   13: {6}
   16: {1,1,1,1}
   17: {7}
   19: {8}
   23: {9}
   25: {3,3}
   27: {2,2,2}
   28: {1,1,4}
   29: {10}
   31: {11}
   32: {1,1,1,1,1}
   37: {12}
		

Crossrefs

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Select[Range[100],#==1||Divisible[Max[primeMS[#]]*Length[primeMS[#]],Total[primeMS[#]]]&]
Previous Showing 61-70 of 147 results. Next