cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 38 results. Next

A128545 Triangle, read by rows, where T(n,k) is the coefficient of q^(n*k) in the q-binomial coefficient [2*n, n] for n >= k >= 0.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 3, 3, 1, 1, 5, 8, 5, 1, 1, 7, 18, 18, 7, 1, 1, 11, 39, 58, 39, 11, 1, 1, 15, 75, 155, 155, 75, 15, 1, 1, 22, 141, 383, 526, 383, 141, 22, 1, 1, 30, 251, 867, 1555, 1555, 867, 251, 30, 1, 1, 42, 433, 1860, 4192, 5448, 4192, 1860, 433, 42, 1
Offset: 0

Views

Author

Paul D. Hanna, Mar 10 2007

Keywords

Comments

Variant of A047812 (Parker's partition triangle).
Column 1 equals the number of partitions of n: A000041(n) is the coefficient of q^n in the central q-binomial coefficient [2*n, n] for n > 0.

Examples

			Triangle T(n,k) (with rows n >= 0 and columns k = 0..n) begins:
  1;
  1,  1;
  1,  2,   1;
  1,  3,   3,    1;
  1,  5,   8,    5,    1;
  1,  7,  18,   18,    7,    1;
  1, 11,  39,   58,   39,   11,    1;
  1, 15,  75,  155,  155,   75,   15,    1;
  1, 22, 141,  383,  526,  383,  141,   22,   1;
  1, 30, 251,  867, 1555, 1555,  867,  251,  30,  1;
  1, 42, 433, 1860, 4192, 5448, 4192, 1860, 433, 42, 1;
  ...
		

Crossrefs

Cf. A003239, A047812 (variant), A047996, A123610, A123611 (row sums).
Cf. A000041 (column 1), A128552 (column 2), A128553 (column 3), A128554 (column 4).

Programs

  • PARI
    T(n,k)=if(n
    				

Formula

Row sums equal the row sums of triangle A123610: A123611(n) = 2*A047996(2*n,n) = 2*A003239(n) for n > 0, where A047996 is the triangle of circular binomial coefficients and A003239(n) = number of rooted planar trees with n non-root nodes.

A385665 Triangle read by rows: T(n,k) is the number of 2n-bead balanced bicolor necklaces that can be rotated into their complements in k different ways.

Original entry on oeis.org

1, 1, 1, 1, 0, 1, 2, 1, 0, 1, 3, 0, 0, 0, 1, 5, 1, 1, 0, 0, 1, 9, 0, 0, 0, 0, 0, 1, 16, 2, 0, 1, 0, 0, 0, 1, 28, 0, 1, 0, 0, 0, 0, 0, 1, 51, 3, 0, 0, 1, 0, 0, 0, 0, 1, 93, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 170, 5, 2, 1, 0, 1, 0, 0, 0, 0, 0, 1, 315, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1
Offset: 1

Views

Author

Tilman Piesk, Jul 06 2025

Keywords

Comments

Let X = A003239, Y = A000013, Z = A000048.
Rotations producing the complementary and the same necklace: CR and SR
There are X(n) balanced bicolor necklaces (BBN) of length 2n. (Central numbers of A047996.)
Y(n) among them are self-complementary (SCBBN). (They can be rotated so that all beads change color.)
Z(n) among those are primitive (not periodic). Each has a unique CR and SR. (SR is trivial rotation.)
The other Y(n)-Z(n) = A115118(n) SCBBN have multiple CR and SR.
T(n,k) SCBBN have k different CR and SR.
Column 1 is Z. The other columns have the same positive entries, each preceded by k-1 zeros.
One could add a column 0 to this triangle, whose entries would be X(n)-Y(n) = 2*A386388(n).
Triangle A385666 does the same for SR of all BBN.

Examples

			Triangle begins:
      k    1  2  3  4  5  6  7  8  9 10 11 12 12 14 15 16     A000013(n)
  n
  1        1  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .             1
  2        1  1  .  .  .  .  .  .  .  .  .  .  .  .  .  .             2
  3        1  .  1  .  .  .  .  .  .  .  .  .  .  .  .  .             2
  4        2  1  .  1  .  .  .  .  .  .  .  .  .  .  .  .             4
  5        3  .  .  .  1  .  .  .  .  .  .  .  .  .  .  .             4
  6        5  1  1  .  .  1  .  .  .  .  .  .  .  .  .  .             8
  7        9  .  .  .  .  .  1  .  .  .  .  .  .  .  .  .            10
  8       16  2  .  1  .  .  .  1  .  .  .  .  .  .  .  .            20
  9       28  .  1  .  .  .  .  .  1  .  .  .  .  .  .  .            30
 10       51  3  .  .  1  .  .  .  .  1  .  .  .  .  .  .            56
 11       93  .  .  .  .  .  .  .  .  .  1  .  .  .  .  .            94
 12      170  5  2  1  .  1  .  .  .  .  .  1  .  .  .  .           180
 13      315  .  .  .  .  .  .  .  .  .  .  .  1  .  .  .           316
 14      585  9  .  .  .  .  1  .  .  .  .  .  .  1  .  .           596
 15     1091  .  3  .  1  .  .  .  .  .  .  .  .  .  1  .          1096
 16     2048 16  .  2  .  .  .  1  .  .  .  .  .  .  .  1          2068
Examples for n=4 with necklaces of length 8:
T(4, 1) = 2 necklaces can be rotated into their complements in k=1 way:
 00001111 can be turned into 11110000 by rotating 4 places to the right.
 00101101 can be turned into 11010010 by rotating 4 places to the right.
T(4, 2) = 1 necklace can be rotated into its complement in k=2 ways:
 00110011 can be turned into 11001100 by rotating 2 or 6 places to the right.
T(4, 4) = 1 necklace can be rotated into its complement in k=4 ways:
 01010101 can be turned into 10101010 by rotating 1, 3, 5 or 7 places to the right.
		

Crossrefs

Formula

T(n,k) = A000048(n/k) iff n divisible by k, otherwise 0.

A032193 Number of necklaces with 8 black beads and n-8 white beads.

Original entry on oeis.org

1, 1, 5, 15, 43, 99, 217, 429, 810, 1430, 2438, 3978, 6310, 9690, 14550, 21318, 30667, 43263, 60115, 82225, 111041, 148005, 195143, 254475, 328756, 420732, 534076, 672452, 840652, 1043460, 1287036, 1577532, 1922741
Offset: 8

Views

Author

Keywords

Comments

The g.f. is Z(C_8,x)/x^8, the 8-variate cycle index polynomial for the cyclic group C_8, with substitution x[i]->1/(1-x^i), i=1,...,8. Therefore by Polya enumeration a(n+8) is the number of cyclically inequivalent 8-necklaces whose 8 beads are labeled with nonnegative integers such that the sum of labels is n, for n=0,1,2,... See A102190 for Z(C_8,x). See the comment in A032191 on the equivalence of this problem with the one given in the `Name' line. - Wolfdieter Lang, Feb 15 2005
From Petros Hadjicostas, Aug 31 2018: (Start)
The CIK[k] transform of sequence (c(n): n>=1) has generating function A_k(x) = (1/k)*Sum_{d|k} phi(d)*C(x^d)^{k/d}, where C(x) = Sum_{n>=1} c(n)*x^n is the g.f. of (c(n): n>=1).
When c(n) = 1 for all n >= 1, we get C(x) = x/(1-x) and A_k(x) = (x^k/k)*Sum_{d|k} phi(d)*(1-x^d)^{-k/d}, which is the g.f. of the number a_k(n) of necklaces of n beads of 2 colors with k of them black and n-k of them white.
Using Taylor expansions, we can easily prove that a_k(n) = (1/k)*Sum_{d|gcd(n,k)} phi(d)*binomial(n/d - 1, k/d - 1) = (1/n)*Sum_{d|gcd(n,k)} phi(d)*binomial(n/d, k/d), which is Robert A. Russell's formula in the Mathematica code below.
For this sequence k = 8, and thus we get the formulae below.
(End)

Crossrefs

Programs

  • Mathematica
    k = 8; Table[Apply[Plus, Map[EulerPhi[ # ]Binomial[n/#, k/# ] &, Divisors[GCD[n, k]]]]/n, {n, k, 30}] (* Robert A. Russell, Sep 27 2004 *)
    CoefficientList[Series[1/8*(1/(1 - x)^8 + 1/(1 - x^2)^4 + 2/(1 - x^4)^2 + 4/(1 - x^8)^1),{x, 0, 30}], x] (* Stefano Spezia, Sep 01 2018 *)

Formula

"CIK[ 8 ]" (necklace, indistinct, unlabeled, 8 parts) transform of 1, 1, 1, 1...
G.f.: (x^8)*(1-3*x+5*x^2+3*x^3-4*x^4+4*x^5+6*x^6-4*x^7+7*x^8-x^9+x^10+x^11)/((1-x)^4*(1-x^2)^2*(1-x^4)*(1-x^8)).
G.f.: 1/8*x^8*(1/(1-x)^8+1/(1-x^2)^4+2/(1-x^4)^2+4/(1-x^8)^1). - Herbert Kociemba, Oct 22 2016
a(n) = (1/8)*Sum_{d|gcd(n,8)} phi(d)*binomial(n/d - 1, 8/d - 1) = (1/n)*Sum_{d|gcd(n,8)} phi(d)*binomial(n/d, 8/d). - Petros Hadjicostas, Aug 31 2018

A123611 Row sums of triangle A123610.

Original entry on oeis.org

1, 2, 4, 8, 20, 52, 160, 492, 1620, 5408, 18504, 64132, 225440, 800048, 2865720, 10341208, 37568340, 137270956, 504176992, 1860277044, 6892335720, 25631327688, 95640894056, 357975249028, 1343650267296, 5056424257552
Offset: 0

Views

Author

Paul D. Hanna, Oct 03 2006

Keywords

Crossrefs

Cf. A047996, A003239; A123610 (triangle), A123612 (antidiagonal sums); central terms: A123617, A123618.
Cf. A128545.

Programs

  • Mathematica
    Total /@ Table[If[k == 0, 1, 1/n DivisorSum[n, If[Divisible[k, #], EulerPhi[#] Binomial[n/#, k/#]^2, 0] &]], {n, 0, 25}, {k, 0, n}] (* Michael De Vlieger, Apr 03 2017, after Jean-François Alcover at A123610 *)
  • PARI
    {a(n)=sum(k=0,n,if(k==0,1,(1/n)*sumdiv(n,d,if(gcd(k,d)==d, eulerphi(d)*binomial(n/d,k/d)^2,0))))}

Formula

a(n) = 2*A047996(2*n,n) = 2*A003239(n) for n > 0, where A047996 is the triangle of circular binomial coefficients and A003239(n) = number of rooted planar trees with n non-root nodes.
Also equals the row sums of triangle A128545, where A128545(n,k) is the coefficient of q^(n*k) in the q-binomial coefficient [2n,n] for n >= k >= 0.
a(n) = (1/n) * Sum_{d | n} phi(n/d) * binomial(2*d, d) for n>0. - Andrew Howroyd, Apr 02 2017
G.f.: 1 - Sum_{n>=1} (phi(n)/n) * log((1-2*x^n + sqrt(1-4*x^n))/2) = 1 - 2*Sum_{n>=1} (phi(n)/n) * log((1+sqrt(1-4*x^n))/2). (Except for the term a(0) = 1, the first g.f. follows from the g.f. in A123610 by setting y=1, as suggested by P. D. Hanna.) - Petros Hadjicostas, Oct 24 2017

A267632 Triangle T(n, k) read by rows: the k-th column of the n-th row lists the number of ways to select k distinct numbers (k >= 1) from [1..n] so that their sum is divisible by n.

Original entry on oeis.org

1, 1, 0, 1, 1, 1, 1, 1, 1, 0, 1, 2, 2, 1, 1, 1, 2, 4, 3, 1, 0, 1, 3, 5, 5, 3, 1, 1, 1, 3, 7, 9, 7, 3, 1, 0, 1, 4, 10, 14, 14, 10, 4, 1, 1, 1, 4, 12, 22, 26, 20, 12, 5, 1, 0, 1, 5, 15, 30, 42, 42, 30, 15, 5, 1, 1, 1, 5, 19, 42, 66, 76, 66, 43, 19, 5, 1, 0
Offset: 1

Views

Author

Dimitri Papadopoulos, Jan 18 2016

Keywords

Comments

Row less the last element is palindrome for n=odd or n=power of 2 where n is the row number (observation-conjecture).
From Petros Hadjicostas, Jul 13 2019: (Start)
By reading carefully the proof of Lemma 5.1 (pp. 65-66) in Barnes (1959), we see that he actually proved a general result (even though he does not state it in the lemma).
According to the definition of this sequence, for 1 <= k <= n, T(n, k) is the number of unordered sets b_1, b_2, ..., b_k of k distinct integers from 1..n such that b_1 + b_2 + ... + b_k = 0 (mod n). The proof of Lemma 5.1 in Barnes (1959) implies that T(n, k) = (1/n) * Sum_{s | gcd(n, k)} (-1)^(k - (k/s)) * phi(s) * binomial(n/s, k/s) for 1 <= k <= n.
For fixed k >= 1, the g.f. of the column (T(n, k): n >= 1) (with T(n, k) = 0 for 1 <= n < k) is (x^k/k) * Sum_{s|k} phi(s) * (-1)^(k - (k/s)) / (1 - x^s)^(k/s), which generalizes Herbert Kociemba's formula from A032801.
Barnes' (1959) formula is a special case of Theorem 4 (p. 66) in Ramanathan (1944). If R(n, k, v) is the number of unordered sets b_1, b_2, ..., b_k of k distinct integers from 1..n such that b_1 + b_2 + ... + b_k = v (mod n), then he proved that R(n, k, v) = (1/n) * Sum_{s | gcd(n,k)} (-1)^(k - (k/s)) * binomial(n/s, k/s) * C_s(v), where C_s(v) = A054535(s, v) = Sum_{d | gcd(s,v)} d * Moebius(s/d) is Ramanujan's sum (even though it was first discovered around 1900 by the Austrian mathematician R. D. von Sterneck).
Because C_s(v = 0) = phi(s), we get Barnes' (implicit) result; i.e., R(n, k, v=0) = T(n, k) for 1 <= k <= n.
For k=2, we have R(n, k=2, v=0) = T(n, k=2) = A004526(n-1) for n >= 1. For k=3, we have R(n, k=3, v=0) = T(n, k=3) = A058212(n) for n >= 1. For k=4, we have R(n, k=4, v=0) = A032801(n) for n >= 1. For k=5, we have R(n, k=5, v=0) = T(n, k=5) = A008646(n-5) for n >= 5.
The reason we have T(2*m+1, k) = A037306(2*m+1, k) = A047996(2*m+1, k) for m >= 0 and k >= 1 is the following. When n = 2*m + 1, all divisors s of gcd(n, k) are odd. In such a case, k - (k/s) is even for all k >= 1, and thus (-1)^(k - (k/s)) = 1, and thus T(n = 2*m+1, k) = (1/n) * Sum_{s | gcd(n, k)} phi(s) * binomial(n/s, k/s) = A037306(2*m+1, k) = A047996(2*m+1, k).
By summing the products of the g.f. of column k times y^k from k = 1 to k = infinity, we get the bivariate g.f. for the array: Sum_{n, k >= 1} T(n, k)*x^n*y^k = Sum_{s >= 1} (phi(s)/s) * log((1 - x^s + (-x*y)^s)/(1 - x^s)) = -x/(1 - x) - Sum_{s >= 1} (phi(s)/s) * log(1 - x^s + (-x*y)^s).
Letting y = 1 in the above bivariate g.f., we get the g.f. of the sequence (Sum_{1 <= k <= n} T(n, k): n >= 1) is -x/(1 - x) - Sum_{s >= 1} (phi(s)/s) * log(1 - x^s + (-x)^s) = -x/(1 - x) + Sum_{m >= 0} (phi(2*m + 1)/(2*m + 1)) * log(1 - 2*x^(2*m+1)), which is the g.f. of sequence A082550. Hence, sequence A082550 consists of the row sums.
There is another important interpretation of this array T(n, k) which is related to some of the references for sequence A047996, but because the discussion is too lengthy, we omit the details.
(End)

Examples

			For n = 5, there is one way to pick one number (5), two ways to pick two numbers (1+4, 2+3), two ways to pick 3 numbers (1+4+5, 2+3+5), one way to pick 4 numbers (1+2+3+4), and one way to pick 5 numbers (1+2+3+4+5) so that their sum is divisible by 5. Therefore, T(5,1) = 1, T(5,2) = 2, T(5,3) = 2, T(5,4) = 1, and T(5,5) = 1.
Table for T(n,k) begins as follows:
n\k 1 2   3    4    5    6    7    8    9   10
1   1
2   1 0
3   1 1   1
4   1 1   1    0
5   1 2   2    1    1
6   1 2   4    3    1    0
7   1 3   5    5    3    1    1
8   1 3   7    9    7    3    1    0
9   1 4  10   14   14   10    4    1    1
10  1 4  12   22   26   20   12    5    1    0
...
		

Crossrefs

Programs

  • Maple
    A267632 := proc(n,k)
        local a,msel,p;
        a := 0 ;
        for msel in combinat[choose](n,k) do
            if modp(add(p,p=msel),n) = 0 then
                a := a+1 ;
            end if;
        end do:
        a;
    end proc: # R. J. Mathar, May 15 2016
    # second Maple program:
    b:= proc(n, m, s) option remember; expand(`if`(n=0,
          `if`(s=0, 1, 0), b(n-1, m, s)+x*b(n-1, m, irem(s+n, m))))
        end:
    T:= n-> (p-> seq(coeff(p, x, i), i=1..n))(b(n$2, 0)):
    seq(T(n), n=1..14);  # Alois P. Heinz, Aug 27 2018
  • Mathematica
    f[k_, n_] :=  Length[Select[Select[Subsets[Range[n]], Length[#] == k &], IntegerQ[Total[#]/n] &]];MatrixForm[Table[{n, Table[f[k, n], {k, n}]}, {n, 10}]] (* Dimitri Papadopoulos, Jan 18 2016 *)

Formula

T(2n+1, k) = A037306(2n+1, k) = A047996(2n+1, k).
From Petros Hadjicostas, Jul 13 2019: (Start)
T(n, k) = (1/n) * Sum_{s | gcd(n, k)} (-1)^(k - (k/s)) * phi(s) * binomial(n/s, k/s) for 1 <= k <= n.
G.f. for column k >= 1: (x^k/k) * Sum_{s|k} phi(s) * (-1)^(k - (k/s)) / (1 - x^s)^(k/s).
Bivariate g.f.: Sum_{n, k >= 1} T(n, k)*x^n*y^k = -x/(1 - x) - Sum_{s >= 1} (phi(s)/s) * log(1 - x^s + (-x*y)^s).
(End)
Sum_{k=1..n} k * T(n,k) = A309122(n). - Alois P. Heinz, Jul 13 2019

A082936 a(n) = (1/(3*n))*Sum_{d|n, d even} phi(2*n/d)*binomial(3d/2,d).

Original entry on oeis.org

1, 1, 3, 10, 43, 201, 1038, 5538, 30667, 173593, 1001603, 5864750, 34769374, 208267320, 1258579654, 7663720710, 46976034379, 289628805623, 1794932468571, 11175157356522, 69864075597643, 438403736549145, 2760351032959050, 17433869214973754, 110420300879752990
Offset: 0

Views

Author

N. J. A. Sloane, May 26 2003

Keywords

Comments

a(n) = number of necklaces of n white beads and 2n black beads. - David Callan, Mar 28 2004

Crossrefs

Cf. A003239.
Column k=2 of A261494.

Programs

  • Maple
    with(numtheory): f := proc(n) local t1,d; t1 := 0; for d from 1 to n do if n mod d = 0 then if d mod 2 = 0 then t1 := t1+phi(n/d)*binomial(3*d/2,d) fi; fi; od; 2*t1/(3*n); end; # use with n even
  • Mathematica
    a[n_] := DivisorSum[n, EulerPhi[n/#]*Binomial[3#, #]&]/(3n); a[0] = 1; Array[a, 30, 0] (* Jean-François Alcover, Dec 02 2015 *)
  • PARI
    C(n, k)=binomial(n,k);
    a(n) = if(n<=0, n==0, sumdiv(n, d, eulerphi(n/d) * C(3*d,d)) / (3*n) );
    /* or, second formula: */
    /* a(n) = if(n<=0, n==0, sumdiv(n, d, eulerphi(n/d) * C(3*d-1,d)) / (2*n) ); */
    /* Joerg Arndt, Oct 21 2012 */

Formula

From Joerg Arndt, Oct 21 2012: (Start)
a(n) = sum( d divides n, phi(n/d) * C(3*d,d) ) / (3*n) for n>=1, a(0)=1.
a(n) = sum( d divides n, phi(n/d) * C(3*d-1,d) ) / (2*n) for n>=1, a(0)=1.
a(n) = A047996(3*n,n).
(End)
a(n) ~ 3^(3*n) / (2^(2*n+1) * sqrt(3*Pi) * n^(3/2)). - Vaclav Kotesovec, Aug 22 2015

Extensions

a(0)=1 prepended by Joerg Arndt, Oct 21 2012

A032194 Number of necklaces with 9 black beads and n-9 white beads.

Original entry on oeis.org

1, 1, 5, 19, 55, 143, 335, 715, 1430, 2704, 4862, 8398, 14000, 22610, 35530, 54484, 81719, 120175, 173593, 246675, 345345, 476913, 650325, 876525, 1168710, 1542684, 2017356, 2615104, 3362260, 4289780, 5433736, 6835972
Offset: 9

Views

Author

Keywords

Comments

The g.f. is Z(C_9,x)/x^9, the 9-variate cycle index polynomial for the cyclic group C_9, with substitution x[i]->1/(1-x^i), i=1,...,9. Therefore by Polya enumeration a(n+9) is the number of cyclically inequivalent 9-necklaces whose 9 beads are labeled with nonnegative integers such that the sum of labels is n, for n=0,1,2,... See A102190 for Z(C_9,x). See the comment in A032191 on the equivalence of this problem with the one given in the `Name' line. - Wolfdieter Lang, Feb 15 2005

Crossrefs

Programs

  • Mathematica
    k = 9; Table[Apply[Plus, Map[EulerPhi[ # ]Binomial[n/#, k/# ] &, Divisors[GCD[n, k]]]]/n, {n, k, 30}] (* Robert A. Russell, Sep 27 2004 *)

Formula

"CIK[ 9 ]" (necklace, indistinct, unlabeled, 9 parts) transform of 1, 1, 1, 1...
G.f.: (x^9)*(1-5*x+14*x^2-18*x^3+21*x^4-21*x^5+25*x^6 -21*x^7 +21*x^8 -18*x^9 +14*x^10 -5*x^11 +x^12) / ((1-x)^6*(1-x^3)^2*(1-x^9)).
G.f.: (1/9)*x^9*(1/(1-x)^9+2/(1-x^3)^3+6/(1-x^9)^1). - Herbert Kociemba, Oct 22 2016

A385666 Triangle read by rows: T(n,k) is the number of 2n-bead balanced binary necklaces with period length 2n/k.

Original entry on oeis.org

1, 1, 1, 3, 0, 1, 8, 1, 0, 1, 25, 0, 0, 0, 1, 75, 3, 1, 0, 0, 1, 245, 0, 0, 0, 0, 0, 1, 800, 8, 0, 1, 0, 0, 0, 1, 2700, 0, 3, 0, 0, 0, 0, 0, 1, 9225, 25, 0, 0, 1, 0, 0, 0, 0, 1, 32065, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 112632, 75, 8, 3, 0, 1, 0, 0, 0, 0, 0, 1, 400023
Offset: 1

Views

Author

Tilman Piesk, Jul 16 2025

Keywords

Comments

There are A003239(n) balanced binary necklaces of length 2n. (Central numbers of A047996.)
T(n,k) is the number of those that can be rotated into themselves in k different ways (at least 1 for the trivial rotation).
A022553(n) necklaces (corresponding to Lyndon words) have only the trivial rotation.
All columns have the same positive entries, each preceded by k-1 zeros.
Compare triangle A385665, which counts only self-complementary balanced binary necklaces.

Examples

			Triangle begins:
         k     1   2  3  4  5  6  7  8  9 10 11 12 13 14 15 16    A003239(n)
  n
  1            1   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .            1
  2            1   1  .  .  .  .  .  .  .  .  .  .  .  .  .  .            2
  3            3   .  1  .  .  .  .  .  .  .  .  .  .  .  .  .            4
  4            8   1  .  1  .  .  .  .  .  .  .  .  .  .  .  .           10
  5           25   .  .  .  1  .  .  .  .  .  .  .  .  .  .  .           26
  6           75   3  1  .  .  1  .  .  .  .  .  .  .  .  .  .           80
  7          245   .  .  .  .  .  1  .  .  .  .  .  .  .  .  .          246
  8          800   8  .  1  .  .  .  1  .  .  .  .  .  .  .  .          810
  9         2700   .  3  .  .  .  .  .  1  .  .  .  .  .  .  .         2704
 10         9225  25  .  .  1  .  .  .  .  1  .  .  .  .  .  .         9252
 11        32065   .  .  .  .  .  .  .  .  .  1  .  .  .  .  .        32066
 12       112632  75  8  3  .  1  .  .  .  .  .  1  .  .  .  .       112720
 13       400023   .  .  .  .  .  .  .  .  .  .  .  1  .  .  .       400024
 14      1432613 245  .  .  .  .  1  .  .  .  .  .  .  1  .  .      1432860
 15      5170575   . 25  .  3  .  .  .  .  .  .  .  .  .  1  .      5170604
 16     18783360 800  .  8  .  .  .  1  .  .  .  .  .  .  .  1     18784170
Examples for n=4 with necklaces of length 8:
T(4, 1) = 8 necklaces have k=1 rotation, i.e. rotating 0 places:
 00001111, 00010111, 00011011, 00011101, 00100111, 00101011, 00101101, 00110101
T(4, 2) = 1 necklace has k=2 rotations:
 00110011 can be rotated onto itself by rotating 0 or 4 places.
T(4, 4) = 1 necklace has k=4 rotations:
 01010101 can be rotated onto itself by rotating 0, 2, 4 or 6 places.
		

Crossrefs

Formula

T(n,k) = A022553(n/k) iff n divisible by k, otherwise 0.

A072506 Triangle giving T(n,m) = number of necklaces of two colors with 2n beads of which m=1..n are black.

Original entry on oeis.org

1, 1, 2, 1, 3, 4, 1, 4, 7, 10, 1, 5, 12, 22, 26, 1, 6, 19, 43, 66, 80, 1, 7, 26, 73, 143, 217, 246, 1, 8, 35, 116, 273, 504, 715, 810, 1, 9, 46, 172, 476, 1038, 1768, 2438, 2704, 1, 10, 57, 245, 776, 1944, 3876, 6310, 8398, 9252, 1, 11, 70, 335, 1197, 3399, 7752
Offset: 1

Views

Author

Wouter Meeussen, Aug 03 2002

Keywords

Comments

Left half of even rows of triangle A047996 (with the leftmost edge discarded).

Crossrefs

Penultimate entries give binary necklaces of n-1 black beads and n+1 white beads, presumably A007595, antepenultimate entries give binary necklaces of n-2 black beads and n+2 white beads, presumably A003444.

Programs

  • Mathematica
    Table[(Plus@@(EulerPhi[ # ]Binomial[2n/#, m/# ] &)/@Intersection[Divisors[2n], Divisors[m]])/(2n), {n, 13}, {m, n}]

Formula

(1/(2n)) Sum_{d |(2n, m)} phi(d)*binomial(2n/d, m/d)

A073020 Triangle of T(n,m) = number of bracelets (necklaces than can be turned over) with m white beads and (2n-m) black ones, for 1<=m<=n.

Original entry on oeis.org

1, 1, 2, 1, 3, 3, 1, 4, 5, 8, 1, 5, 8, 16, 16, 1, 6, 12, 29, 38, 50, 1, 7, 16, 47, 79, 126, 133, 1, 8, 21, 72, 147, 280, 375, 440, 1, 9, 27, 104, 252, 561, 912, 1282, 1387, 1, 10, 33, 145, 406, 1032, 1980, 3260, 4262, 4752, 1, 11, 40, 195, 621, 1782, 3936, 7440, 11410
Offset: 1

Views

Author

Wouter Meeussen, Aug 03 2002

Keywords

Comments

Left half of even rows of table A052307 with left column deleted.

Examples

			1; 1,2; 1,3,3; 1,4,5,8; 1,5,8,16,16; ...
		

Crossrefs

Cf. A052307, A047996, A072506, A005648. Cf. A078925 for odd number of beads. Last term in each row gives A005648.

Programs

  • Mathematica
    Table[Length[ Union[Last[Sort[Flatten[Table[{RotateLeft[ #, i], Reverse[RotateLeft[ #, i]]}, {i, 2k}], 1]]]& /@ Permutations[IntegerDigits[2^(2k-j) (2^j-1), 2]]] ], {k, 9}, {j, k}]
    Table[( -(-1)^n If[EvenQ[m+n], 0, Binomial[n-1, Floor[(m-2)/2]] ]/2 + Fold[ #1+EulerPhi[ #2]Binomial[2n/#2, m/#2]/(2n)&, Binomial[2Floor[n/2], Floor[m/2]], Intersection[Divisors[2n], Divisors[m]]]/2), {n, 9}, {m, n}]
    Table[ f[k, 2n], {n, 11}, {k, n}] // Flatten (* Robert G. Wilson v, Mar 29 2006 *)

Formula

(1/2)*(C(2*(n\2), m\2) +Sum (d|(2n, m) phi(d)C(2n/d, m/d) ) - (-1)^n if(even(n+m), 0, C(n-1, floor(m/2-1/2) ).
Previous Showing 21-30 of 38 results. Next