cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-16 of 16 results.

A173752 a(n) = m-k where (prime(k), prime(m)) is the n-th prime pair (x^2-x+11, x^2+x+11), integer x >= 0.

Original entry on oeis.org

0, 1, 1, 2, 2, 2, 3, 3, 4, 3, 5, 7, 5, 5, 9, 8, 10, 17, 15, 15, 16, 15, 17, 18, 20, 23, 27, 25, 30, 27, 26, 30, 32, 39, 43, 49, 48, 55, 54, 48, 64, 66, 62, 61, 62, 68, 63, 65, 77, 65, 73, 79, 85, 73, 86, 93, 98, 84, 100, 107, 113, 110, 105, 107, 121, 119, 120, 119, 121, 125, 114
Offset: 1

Views

Author

Juri-Stepan Gerasimov, Feb 23 2010

Keywords

Comments

prime(j) is used here to refer to the j-th prime.

Examples

			The first prime pair (x^2-x+11, x^2+x+11) is obtained for x = 0: 0^2-0+11 = 11 and 0^2+0+11 = 11; 11 is the fifth prime, hence a(1) = 5-5 = 0.
The second prime pair is obtained for x = 1: 1^2-1+11 = 11 and 1^2+1+11 = 13; 11 is the fifth prime and 13 is the sixth prime, hence a(2) = 6-5 = 1.
The third prime pair is obtained for x = 2: 2^2-2+11 = 13 and 2^2+2+11 = 17; 13 is the sixth prime and 17 is the seventh prime, hence a(3) = 7-6 = 1.
The eleventh prime pair is obtained for x = 13: 13^2-13+11 = 167 and 13^2+13+11 = 193; 167 is prime(39) and 193 is prime(44), hence a(11) = 44-39 = 5.
		

Crossrefs

Cf. A048058 (n^2+n+11), A048059 (primes of the form n^2+n+11), A048097 (n such that n^2+n+11 is prime), A175154 (prime index of A048059(n)).

Programs

  • Magma
    PrimePi:=func< n | #PrimesUpTo(n) >; [ PrimePi(p)-PrimePi(q): x in [0..850] | IsPrime(p) and IsPrime(q) where p is x^2+x+11 where q is x^2-x+11 ]; // Klaus Brockhaus, Feb 27 2010
  • Maple
    for x from 0 to 1000 do mp := x^2+x+11 ; kp := x^2-x+11 ; if isprime(mp) and isprime(kp) then m := numtheory[pi](mp) ; k := numtheory[pi](kp) ; printf("%d,",m-k) ; end if; end do : # R. J. Mathar, Mar 01 2010
  • Mathematica
    pp[n_]:=Module[{c=n^2+11},If[AllTrue[c+{n,-n},PrimeQ],PrimePi[c+n]- PrimePi[ c-n],0]]; Join[{0},Array[pp,1000]/.(0->Nothing)] (* The program uses the AllTrue function from Mathematica version 10 *) (* Harvey P. Dale, Oct 15 2017 *)

Extensions

Edited and extended by Klaus Brockhaus, Feb 27 2010
a(15) corrected and sequence extended by R. J. Mathar, Mar 01 2010

A184902 Primes that are not factors of m^2 + m + 11 (A048058).

Original entry on oeis.org

2, 3, 5, 7, 19, 29, 37, 61, 71, 73, 89, 113, 131, 137, 149, 151, 157, 163, 179, 191, 199, 211, 223, 227, 233, 241, 257, 263, 277, 313, 331, 347, 349, 373, 383, 389, 409, 419, 421, 433, 449, 457, 463, 467, 491, 499, 503, 521, 523, 571, 577
Offset: 1

Views

Author

Zak Seidov, May 18 2011

Keywords

Comments

The discriminant of this polynomial is -43. These are the primes that are not a square (mod 43). These primes are congruent to {2, 3, 5, 7, 8, 12, 18, 19, 20, 22, 26, 27, 28, 29, 30, 32, 33, 34, 37, 39, 42} (mod 43). - T. D. Noe, May 22 2011
Inert rational primes in the field Q(sqrt(-43)). - N. J. A. Sloane, Dec 25 2017

Crossrefs

Cf. A048058 (n^2 + n + 11), A048059 (primes of the form n^2 + n + 11), A048097 (n^2 + n + 11 is prime).

Programs

  • Mathematica
    Reap[Do[p = Prime[n]; ta = Table[Mod[m(m + 1) + 11, p],{m, 0, p/2 + 1}]; If[FreeQ[ta, 0], Sow[p]], {n, 1000}]][[2, 1]]
    Select[Prime[Range[100]], JacobiSymbol[#, 43] == -1 &] (* T. D. Noe, May 22 2011 *)

Formula

a(n) ~ 2n log n. - Charles R Greathouse IV, May 22 2011

A297786 Decimal expansion of 10980011/999^3.

Original entry on oeis.org

0, 1, 1, 0, 1, 3, 0, 1, 7, 0, 2, 3, 0, 3, 1, 0, 4, 1, 0, 5, 3, 0, 6, 7, 0, 8, 3, 1, 0, 1, 1, 2, 1, 1, 4, 3, 1, 6, 7, 1, 9, 3, 2, 2, 1, 2, 5, 1, 2, 8, 3, 3, 1, 7, 3, 5, 3, 3, 9, 1, 4, 3, 1, 4, 7, 3, 5, 1, 7, 5, 6, 3, 6, 1, 1, 6, 6, 1, 7, 1, 3, 7, 6, 7, 8, 2, 3
Offset: 0

Views

Author

Seiichi Manyama, Jan 06 2018

Keywords

Examples

			0.011013017023031041053067083101121...
		

Crossrefs

Programs

  • Mathematica
    Join[{0},RealDigits[10980011/999^3,10,120][[1]]] (* Harvey P. Dale, Aug 20 2021 *)

Formula

Sum_{k>=0} 10^(-3*k-3)*A048058(k) = 10980011/999^3.

A161726 a(n) = n^2 - 917*n + 9479.

Original entry on oeis.org

9479, 8563, 7649, 6737, 5827, 4919, 4013, 3109, 2207, 1307, 409, -487, -1381, -2273, -3163, -4051, -4937, -5821, -6703, -7583, -8461, -9337, -10211, -11083, -11953, -12821, -13687, -14551, -15413, -16273, -17131, -17987, -18841, -19693, -20543, -21391, -22237
Offset: 0

Views

Author

Arkadiusz Wesolowski, Jun 17 2009

Keywords

Comments

A prime-generating polynomial of the form f(x) = x^2 - b*x + c.
|a(n)| are distinct primes for 0 <= n <= 29.
The values of this polynomial are never divisible by a prime less than 37. - Arkadiusz Wesolowski, Oct 11 2011

Crossrefs

Programs

Formula

G.f.: (-9479 + 19874*x - 10397*x^2)/(x-1)^3. - R. J. Mathar, Mar 08 2011
From Elmo R. Oliveira, Feb 09 2025: (Start)
E.g.f.: exp(x)*(9479 - 916*x + x^2).
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n > 2. (End)

Extensions

Definition and offset changed by R. J. Mathar, Jun 18 2009

A268101 Smallest prime p such that some polynomial of the form a*x^2 - b*x + p generates distinct primes in absolute value for x = 1 to n, where 0 < a < p and 0 <= b < p.

Original entry on oeis.org

2, 3, 5, 5, 7, 7, 11, 11, 11, 11, 13, 13, 17, 17, 17, 17, 19, 19, 23, 23, 23, 23, 29, 29, 29, 29, 29, 29, 31, 41, 41, 41, 41, 41, 41, 41, 41, 41, 41, 41, 647, 1277, 1979, 2753
Offset: 1

Views

Author

Arkadiusz Wesolowski, Jan 26 2016

Keywords

Examples

			a(1) = 2 (a prime), x^2 + 2 gives a prime for x = 1.
a(2) = 3 (a prime), 2*x^2 + 3 gives distinct primes for x = 1 to 2.
a(4) = 5 (a prime), 2*x^2 + 5 gives distinct primes for x = 1 to 4.
a(6) = 7 (a prime), 4*x^2 + 7 gives distinct primes for x = 1 to 6.
a(10) = 11 (a prime), 2*x^2 + 11 gives distinct primes for x = 1 to 10.
a(12) = 13 (a prime), 6*x^2 + 13 gives distinct primes for x = 1 to 12.
a(16) = 17 (a prime), 6*x^2 + 17 gives distinct primes for x = 1 to 16.
a(18) = 19 (a prime), 10*x^2 + 19 gives distinct primes for x = 1 to 18.
a(22) = 23 (a prime), 3*x^2 - 3*x + 23 gives distinct primes for x = 1 to 22.
a(28) = 29 (a prime), 2*x^2 + 29 gives distinct primes for x = 1 to 28.
a(29) = 31 (a prime), 2*x^2 - 4*x + 31 gives distinct primes for x = 1 to 29.
a(40) = 41 (a prime), x^2 - x + 41 gives distinct primes for x = 1 to 40.
a(41) = 647 (a prime), abs(36*x^2 - 594*x + 647) gives distinct primes for x = 1 to 41.
a(42) = 1277 (a prime), abs(36*x^2 - 666*x + 1277) gives distinct primes for x = 1 to 42.
a(43) = 1979 (a prime), abs(36*x^2 - 738*x + 1979) gives distinct primes for x = 1 to 43.
a(44) = 2753 (a prime), abs(36*x^2 - 810*x + 2753) gives distinct primes for x = 1 to 44.
		

Crossrefs

A318791 Prime generating polynomial: a(n) = 9*n^2 - 249*n + 1763.

Original entry on oeis.org

1523, 1301, 1097, 911, 743, 593, 461, 347, 251, 173, 113, 71, 47, 41, 53, 83, 131, 197, 281, 383, 503, 641, 797, 971, 1163, 1373, 1601, 1847, 2111, 2393, 2693, 3011, 3347, 3701, 4073, 4463, 4871, 5297, 5741, 6203, 6683, 7181, 7697, 8231, 8783, 9353
Offset: 1

Views

Author

Arashdeep Singh, Dec 15 2018

Keywords

Comments

This polynomial (9*n^2 - 249*n + 1763) generates 40 distinct primes in succession from n = 1 to 40.

Crossrefs

Programs

  • Maple
    seq(9*n^2-249*n+1763,n=1..50); # Muniru A Asiru, Dec 19 2018
  • Mathematica
    Array[9#^2 - 249# + 1763 &, 50] (* Amiram Eldar, Dec 15 2018 *)

Formula

From Chai Wah Wu, Feb 12 2019: (Start)
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n > 3.
G.f.: x*(-1763*x^2 + 3268*x - 1523)/(x - 1)^3. (End)
a(n) = p(41 - 3*n), where p(n) = n^2 + n + 41 is Euler's prime generating polynomial - see A202018 and A005846. - Peter Bala, Jun 10 2021
E.g.f.: exp(x)*(9*x^2 - 240*x + 1763) - 1763. - Elmo R. Oliveira, Feb 10 2025
Previous Showing 11-16 of 16 results.