A304867
Number of non-isomorphic hypertrees of weight n.
Original entry on oeis.org
1, 1, 1, 1, 2, 2, 5, 6, 13, 20, 41, 70, 144, 266, 545, 1072, 2210, 4491, 9388, 19529, 41286, 87361, 186657, 399927, 862584, 1866461, 4058367, 8852686, 19384258, 42570435, 93783472, 207157172, 458805044, 1018564642, 2266475432, 5053991582, 11292781891, 25280844844
Offset: 0
Non-isomorphic representatives of the a(6) = 5 hypertrees are the following:
{{1,2,3,4,5,6}}
{{1,2},{1,3,4,5}}
{{1,2,3},{1,4,5}}
{{1,2},{1,3},{1,4}}
{{1,2},{1,3},{2,4}}
Non-isomorphic representatives of the a(7) = 6 hypertrees are the following:
{{1,2,3,4,5,6,7}}
{{1,2},{1,3,4,5,6}}
{{1,2,3},{1,4,5,6}}
{{1,2},{1,3},{1,4,5}}
{{1,2},{1,3},{2,4,5}}
{{1,3},{2,4},{1,2,5}}
From _Kevin Ryde_, Feb 25 2020: (Start)
a(6) = 5 hypertrees of weight 6 and their corresponding free trees of 6 edges (7 vertices). Each * is an "odd" vertex (odd distance to a leaf). Each hyperedge is the set of "even" vertices surrounding an odd.
{1,2,3,4,5,6} 3 2
\ /
4-*-1 (star 7)
/ \
5 6
.
{1,2},{1,3,4,5} /-3
2--*--1--*--4
\-5
.
{1,2,3},{1,4,5} 2-\ /-4
*--1--*
3-/ \-5
.
{1,2},{1,3},{1,4} /-*--2
1--*--3
\-*--4
.
{1,2},{2,4},{1,3} 3--*--1--*--2--*--4 (path 7)
(End)
Cf.
A007716,
A030019,
A035053,
A048143,
A054921,
A134955,
A134957,
A144959,
A304911,
A304912,
A318601.
-
etr[p_] := Module[{b}, b[n_] := b[n] = If[n == 0, 1, Sum[Sum[d*p[d], {d, Divisors[j]}]*b[n - j], {j, 1, n}]/n]; b];
EulerT[v_List] := With[{q = etr[v[[#]]&]}, q /@ Range[Length[v]]];
ser[v_] := Sum[v[[i]] x^(i-1), {i, 1, Length[v]}] + O[x]^Length[v];
c[n_] := Module[{v = {1}}, For[i = 1, i <= Ceiling[n/2], i++, v = Join[{1}, EulerT[Join[{0}, EulerT[v]]]]]; v];
seq[n_] := Module[{u = c[n]}, x*ser[EulerT[u]]*(1 - x*ser[u]) + (1 - x)* ser[u] + x + O[x]^n // CoefficientList[#, x]&];
seq[40] (* Jean-François Alcover, Feb 08 2020, after Andrew Howroyd *)
-
EulerT(v)={Vec(exp(x*Ser(dirmul(v,vector(#v,n,1/n))))-1, -#v)}
c(n)={my(v=[1]); for(i=1, ceil(n/2), v=concat([1], EulerT(concat([0], EulerT(v))))); v}
seq(n)={my(u=c(n)); Vec(x*Ser(EulerT(u))*(1-x*Ser(u)) + (1 - x)*Ser(u) + x + O(x*x^n))} \\ Andrew Howroyd, Aug 29 2018
A306005
Number of non-isomorphic set-systems of weight n with no singletons.
Original entry on oeis.org
1, 0, 1, 1, 3, 4, 12, 19, 51, 106, 274, 647, 1773, 4664, 13418, 38861, 118690, 370588, 1202924, 4006557, 13764760, 48517672, 175603676, 651026060, 2471150365, 9590103580, 38023295735, 153871104726, 635078474978, 2671365285303, 11444367926725, 49903627379427
Offset: 0
Non-isomorphic representatives of the a(6) = 12 set-systems:
{{1,2,3,4,5,6}}
{{1,2},{3,4,5,6}}
{{1,5},{2,3,4,5}}
{{3,4},{1,2,3,4}}
{{1,2,3},{4,5,6}}
{{1,2,5},{3,4,5}}
{{1,3,4},{2,3,4}}
{{1,2},{1,3},{2,3}}
{{1,2},{3,4},{5,6}}
{{1,2},{3,5},{4,5}}
{{1,3},{2,4},{3,4}}
{{1,4},{2,4},{3,4}}
The complement is counted by
A330053.
Cf.
A007716,
A034691,
A048143,
A049311,
A054921,
A116540,
A283877,
A293606,
A293607,
A304867,
A305999,
A305854-
A305857,
A306005-
A306008.
-
WeighT(v)={Vec(exp(x*Ser(dirmul(v, vector(#v, n, (-1)^(n-1)/n))))-1, -#v)}
permcount(v) = {my(m=1, s=0, k=0, t); for(i=1, #v, t=v[i]; k=if(i>1&&t==v[i-1], k+1, 1); m*=t*k; s+=t); s!/m}
K(q, t, k)={WeighT(Vec(sum(j=1, #q, my(g=gcd(t, q[j])); g*x^(q[j]/g)) + O(x*x^k), -k)) - Vec(sum(j=1, #q, if(t%q[j]==0, q[j])) + O(x*x^k), -k)}
a(n)={if(n==0, 1, my(s=0); forpart(q=n, my(g=sum(t=1, n, subst(x*Ser(K(q, t, n\t)/t),x,x^t) )); s+=permcount(q)*polcoef(exp(g - subst(g,x,x^2)), n)); s/n!)} \\ Andrew Howroyd, Jan 16 2024
A326753
Number of connected components of the set-system with BII-number n.
Original entry on oeis.org
0, 1, 1, 2, 1, 1, 1, 1, 1, 2, 2, 3, 2, 2, 2, 2, 1, 1, 2, 2, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 1, 1, 1, 2, 1, 2, 1, 1, 1, 1, 1, 2, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1
Offset: 0
The set-system {{1,2},{1,4},{3}} with BII-number 268 has two connected components, so a(268) = 2.
Positions of 0's and 1's are
A326749.
Cf.
A000120,
A001187,
A029931,
A048143,
A048793,
A070939,
A072639,
A304716,
A305078,
A305079 (same for MM-numbers),
A323818,
A326031,
A326702.
-
bpe[n_]:=Join@@Position[Reverse[IntegerDigits[n,2]],1];
csm[s_]:=With[{c=Select[Tuples[Range[Length[s]],2],And[OrderedQ[#],UnsameQ@@#,Length[Intersection@@s[[#]]]>0]&]},If[c=={},s,csm[Sort[Append[Delete[s,List/@c[[1]]],Union@@s[[c[[1]]]]]]]]];
Table[Length[csm[bpe/@bpe[n]]],{n,0,100}]
-
from sympy.utilities.iterables import connected_components
def bin_i(n): #binary indices
return([(i+1) for i, x in enumerate(bin(n)[2:][::-1]) if x =='1'])
def A326753(n):
E,a = [],[bin_i(k) for k in bin_i(n)]
m = len(a)
for i in range(m):
for j in a[i]:
for k in range(m):
if j in a[k]:
E.append((i,k))
return(len(connected_components((list(range(m)),E)))) # John Tyler Rascoe, Jul 16 2024
A261005
Number of unlabeled simplicial complexes with n nodes.
Original entry on oeis.org
1, 1, 2, 5, 20, 180, 16143, 489996795, 1392195548399980210, 789204635842035039135545297410259322
Offset: 0
From _Gus Wiseman_, Feb 23 2019: (Start)
Non-isomorphic representatives of the a(0) = 1 through a(4) = 20 antichains:
{} {{1}} {{12}} {{123}} {{1234}}
{{1}{2}} {{1}{23}} {{1}{234}}
{{13}{23}} {{12}{34}}
{{1}{2}{3}} {{14}{234}}
{{12}{13}{23}} {{1}{2}{34}}
{{134}{234}}
{{1}{24}{34}}
{{1}{2}{3}{4}}
{{13}{24}{34}}
{{14}{24}{34}}
{{13}{14}{234}}
{{12}{134}{234}}
{{1}{23}{24}{34}}
{{124}{134}{234}}
{{12}{13}{24}{34}}
{{14}{23}{24}{34}}
{{12}{13}{14}{234}}
{{123}{124}{134}{234}}
{{13}{14}{23}{24}{34}}
{{12}{13}{14}{23}{24}{34}}
(End)
- Benoît Jubin, Posting to Sequence Fans Mailing List, Aug 12 2015.
- C. Lienkaemper, A. Shiu, and Z. Woodstock, Obstructions to convexity in neural codes, Preprint 2015.
- Francisco Ponce Carrión and Seth Sullivant, Marginal Independence and Partial Set Partitions, arXiv:2402.16292 [math.ST], 2024. See p. 21.
- Gus Wiseman, Sequences enumerating clutters, antichains, hypertrees, and hyperforests, organized by labeling, spanning, and allowance of singletons.
A307249
Number of simplicial complexes with n nodes.
Original entry on oeis.org
1, 1, 2, 9, 114, 6894, 7785062, 2414627396434, 56130437209370320359966, 286386577668298410623295216696338374471993
Offset: 0
Maximal simplices of the a(0) = 1 through a(3) = 9 simplicial complexes:
{} {{1}} {{12}} {{123}}
{{1}{2}} {{1}{23}}
{{2}{13}}
{{3}{12}}
{{12}{13}}
{{12}{23}}
{{13}{23}}
{{1}{2}{3}}
{{12}{13}{23}}
- Francisco Ponce Carrión and Seth Sullivant, Marginal Independence and Partial Set Partitions, arXiv:2402.16292 [math.ST], 2024. See p. 21.
- Gus Wiseman, Sequences enumerating clutters, antichains, hypertrees, and hyperforests, organized by labeling, spanning, and allowance of singletons.
Cf.
A000372,
A003182,
A006126,
A006602,
A014466,
A261005,
A293606,
A293993,
A305000,
A305844,
A306550,
A317674,
A319721,
A320449.
-
nn=5;
stableSets[u_,Q_]:=If[Length[u]===0,{{}},With[{w=First[u]},Join[stableSets[DeleteCases[u,w],Q],Prepend[#,w]&/@stableSets[DeleteCases[u,r_/;r===w||Q[r,w]||Q[w,r]],Q]]]];
Table[Length[stableSets[Subsets[Range[n],{2,n}],SubsetQ]],{n,0,nn}]
A293994
Number of unlabeled multiset clutters of weight n.
Original entry on oeis.org
1, 1, 2, 3, 7, 13, 39, 88, 265
Offset: 0
Non-isomorphic representatives of the a(5) = 13 multiset clutters are:
((11111)), ((11112)), ((11122)), ((11123)), ((11223)), ((11234)), ((12345)), ((11)(122)), ((11)(123)), ((12)(111)), ((12)(113)), ((12)(134)), ((13)(122)).
A006602
a(n) is the number of hierarchical models on n unlabeled factors or variables with linear terms forced.
Original entry on oeis.org
2, 1, 2, 5, 20, 180, 16143, 489996795, 1392195548399980210, 789204635842035039135545297410259322
Offset: 0
From _Gus Wiseman_, Feb 20 2019: (Start)
Non-isomorphic representatives of the a(0) = 2 through a(4) = 20 antichains:
{} {{1}} {{12}} {{123}} {{1234}}
{{}} {{1}{2}} {{1}{23}} {{1}{234}}
{{13}{23}} {{12}{34}}
{{1}{2}{3}} {{14}{234}}
{{12}{13}{23}} {{1}{2}{34}}
{{134}{234}}
{{1}{24}{34}}
{{1}{2}{3}{4}}
{{13}{24}{34}}
{{14}{24}{34}}
{{13}{14}{234}}
{{12}{134}{234}}
{{1}{23}{24}{34}}
{{124}{134}{234}}
{{12}{13}{24}{34}}
{{14}{23}{24}{34}}
{{12}{13}{14}{234}}
{{123}{124}{134}{234}}
{{13}{14}{23}{24}{34}}
{{12}{13}{14}{23}{24}{34}}
(End)
- Y. M. M. Bishop, S. E. Fienberg and P. W. Holland, Discrete Multivariate Analysis. MIT Press, 1975, p. 34. [In part (e), the Hierarchy Principle for log-linear models is defined. It essentially says that if a higher-order parameter term is included in the log-linear model, then all the lower-order parameter terms should also be included. - Petros Hadjicostas, Apr 10 2020]
- V. Jovovic and G. Kilibarda, On enumeration of the class of all monotone Boolean functions, in preparation.
- A. A. Mcintosh, personal communication.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- Aniruddha Biswas and Palash Sarkar, Counting Unate and Monotone Boolean Functions Under Restrictions of Balancedness and Non-Degeneracy, J. Int. Seq. (2025) Vol. 28, Art. No. 25.3.4. See p. 14.
- V. Jovovic and G. Kilibarda, On the number of Boolean functions in the Post classes F^{mu}_8, Diskretnaya Matematika, 11(4) (1999), 127-138 (translated in Discrete Mathematics and Applications, 9(6) (1999), 593-605).
- C. Lienkaemper, When do neural codes come from convex or good covers?, 2015.
- C. L. Mallows, Emails to N. J. A. Sloane, Jun-Jul 1991
- Gus Wiseman, Sequences enumerating clutters, antichains, hypertrees, and hyperforests, organized by labeling, spanning, and allowance of singletons.
Cf.
A000372,
A003182,
A006126 (labeled case),
A007411,
A014466,
A261005,
A293993,
A304997,
A304998,
A304999,
A305001,
A305855,
A306505,
A320449,
A321679.
a(6) from A. Boneh, 32 Hantkeh St., Haifa 34608, Israel, Mar 31 2000
A306006
Number of non-isomorphic intersecting set-systems of weight n.
Original entry on oeis.org
1, 1, 1, 2, 3, 5, 10, 16, 30, 57, 109, 209, 431, 873, 1850, 3979, 8819, 19863
Offset: 0
Non-isomorphic representatives of the a(6) = 10 set-systems:
{{1,2,3,4,5,6}}
{{5},{1,2,3,4,5}}
{{1,5},{2,3,4,5}}
{{3,4},{1,2,3,4}}
{{1,2,5},{3,4,5}}
{{1,3,4},{2,3,4}}
{{3},{2,3},{1,2,3}}
{{4},{1,4},{2,3,4}}
{{1,2},{1,3},{2,3}}
{{1,4},{2,4},{3,4}}
Cf.
A007716,
A034691,
A048143,
A049311,
A116540,
A283877,
A293606,
A293607,
A304867,
A305999,
A305854-
A305857,
A306005-
A306008.
A303837
Number of z-trees with least common multiple n > 1.
Original entry on oeis.org
0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 2, 1, 1, 1, 3, 1, 1, 1, 2, 1, 4, 1, 1, 1, 1, 1, 4, 1, 1, 1, 3, 1, 4, 1, 2, 2, 1, 1, 4, 1, 2, 1, 2, 1, 3, 1, 3, 1, 1, 1, 10, 1, 1, 2, 1, 1, 4, 1, 2, 1, 4, 1, 6, 1, 1, 2, 2, 1, 4, 1, 4, 1, 1, 1, 10, 1, 1, 1
Offset: 1
The a(72) = 6 z-trees together with the corresponding multiset systems (see A112798, A302242) are the following.
(72): {{1,1,1,2,2}}
(8,18): {{1,1,1},{1,2,2}}
(8,36): {{1,1,1},{1,1,2,2}}
(9,24): {{2,2},{1,1,1,2}}
(6,8,9): {{1,2},{1,1,1},{2,2}}
(8,9,12): {{1,1,1},{2,2},{1,1,2}}
The a(60) = 10 z-trees together with the corresponding multiset systems are the following.
(60): {{1,1,2,3}}
(4,30): {{1,1},{1,2,3}}
(6,20): {{1,2},{1,1,3}}
(10,12): {{1,3},{1,1,2}}
(12,15): {{1,1,2},{2,3}}
(12,20): {{1,1,2},{1,1,3}}
(15,20): {{2,3},{1,1,3}}
(4,6,10): {{1,1},{1,2},{1,3}}
(4,6,15): {{1,1},{1,2},{2,3}}
(4,10,15): {{1,1},{1,3},{2,3}}
Cf.
A006126,
A030019,
A048143,
A076078,
A112798,
A275307,
A285572,
A286518,
A286520,
A293993,
A293994,
A302242,
A303838,
A304118.
-
zsm[s_]:=With[{c=Select[Tuples[Range[Length[s]],2],And[Less@@#,GCD@@s[[#]]]>1&]},If[c=={},s,zsm[Union[Append[Delete[s,List/@c[[1]]],LCM@@s[[c[[1]]]]]]]]];
zensity[s_]:=Total[(PrimeNu[#]-1&)/@s]-PrimeNu[LCM@@s];
Table[Length[Select[Rest[Subsets[Rest[Divisors[n]]]],And[zensity[#]==-1,zsm[#]=={n},Select[Tuples[#,2],UnsameQ@@#&&Divisible@@#&]=={}]&]],{n,2,50}]
A261006
Number of unlabeled connected simplicial complexes with n nodes.
Original entry on oeis.org
1, 1, 1, 3, 14, 157, 15942, 489980450, 1392195547909966848, 789204635842035012967539870068113408
Offset: 0
- Benoît Jubin, Posting to Sequence Fans Mailing List, Aug 12 2015
Comments