cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 148 results. Next

A304867 Number of non-isomorphic hypertrees of weight n.

Original entry on oeis.org

1, 1, 1, 1, 2, 2, 5, 6, 13, 20, 41, 70, 144, 266, 545, 1072, 2210, 4491, 9388, 19529, 41286, 87361, 186657, 399927, 862584, 1866461, 4058367, 8852686, 19384258, 42570435, 93783472, 207157172, 458805044, 1018564642, 2266475432, 5053991582, 11292781891, 25280844844
Offset: 0

Views

Author

Gus Wiseman, May 20 2018

Keywords

Comments

A hypertree E is a connected antichain of finite sets satisfying Sum_{e in E} (|e| - 1) = |U(E)| - 1. The weight of a hypertree is the sum of cardinalities of its elements. Weight is generally not the same as number of vertices (see A035053).
From Kevin Ryde, Feb 25 2020: (Start)
a(n), except at n=1, is the number of free trees of n edges (so n+1 vertices) where any two leaves are an even distance apart. All trees are bipartite graphs and this condition is equivalent to all leaves being in the same bipartite half. The diameter of a tree is always between two leaves so these trees have even diameter (A000676).
The correspondence between hypertrees and these free trees is described for instance by Bacher (start of section 1.2). In such a free tree, call a vertex "even" if it is an even distance from a leaf. The hypertree vertices are these even vertices. Each hyperedge is the set of vertices surrounding an odd vertex, so hypertree weight is the total number of edges in the free tree.
(End)

Examples

			Non-isomorphic representatives of the a(6) = 5 hypertrees are the following:
  {{1,2,3,4,5,6}}
  {{1,2},{1,3,4,5}}
  {{1,2,3},{1,4,5}}
  {{1,2},{1,3},{1,4}}
  {{1,2},{1,3},{2,4}}
Non-isomorphic representatives of the a(7) = 6 hypertrees are the following:
  {{1,2,3,4,5,6,7}}
  {{1,2},{1,3,4,5,6}}
  {{1,2,3},{1,4,5,6}}
  {{1,2},{1,3},{1,4,5}}
  {{1,2},{1,3},{2,4,5}}
  {{1,3},{2,4},{1,2,5}}
From _Kevin Ryde_, Feb 25 2020: (Start)
a(6) = 5 hypertrees of weight 6 and their corresponding free trees of 6 edges (7 vertices).  Each * is an "odd" vertex (odd distance to a leaf).  Each hyperedge is the set of "even" vertices surrounding an odd.
  {1,2,3,4,5,6}       3   2
                       \ /
                      4-*-1      (star 7)
                       / \
                      5   6
  .
  {1,2},{1,3,4,5}               /-3
                      2--*--1--*--4
                                \-5
  .
  {1,2,3},{1,4,5}     2-\       /-4
                         *--1--*
                      3-/       \-5
  .
  {1,2},{1,3},{1,4}    /-*--2
                      1--*--3
                       \-*--4
  .
  {1,2},{2,4},{1,3}   3--*--1--*--2--*--4   (path 7)
(End)
		

Crossrefs

Programs

  • Mathematica
    etr[p_] := Module[{b}, b[n_] := b[n] = If[n == 0, 1, Sum[Sum[d*p[d], {d, Divisors[j]}]*b[n - j], {j, 1, n}]/n]; b];
    EulerT[v_List] := With[{q = etr[v[[#]]&]}, q /@ Range[Length[v]]];
    ser[v_] := Sum[v[[i]] x^(i-1), {i, 1, Length[v]}] + O[x]^Length[v];
    c[n_] := Module[{v = {1}}, For[i = 1, i <= Ceiling[n/2], i++, v = Join[{1}, EulerT[Join[{0}, EulerT[v]]]]]; v];
    seq[n_] := Module[{u = c[n]}, x*ser[EulerT[u]]*(1 - x*ser[u]) + (1 - x)* ser[u] + x + O[x]^n // CoefficientList[#, x]&];
    seq[40] (* Jean-François Alcover, Feb 08 2020, after Andrew Howroyd *)
  • PARI
    EulerT(v)={Vec(exp(x*Ser(dirmul(v,vector(#v,n,1/n))))-1, -#v)}
    c(n)={my(v=[1]); for(i=1, ceil(n/2), v=concat([1], EulerT(concat([0], EulerT(v))))); v}
    seq(n)={my(u=c(n)); Vec(x*Ser(EulerT(u))*(1-x*Ser(u)) + (1 - x)*Ser(u) + x + O(x*x^n))} \\ Andrew Howroyd, Aug 29 2018

Formula

a(n) = Sum_{k=1..floor(n/2)} A318601(n+1-k, k). - Andrew Howroyd, Aug 29 2018

Extensions

Terms a(10) and beyond from Andrew Howroyd, Aug 29 2018

A306005 Number of non-isomorphic set-systems of weight n with no singletons.

Original entry on oeis.org

1, 0, 1, 1, 3, 4, 12, 19, 51, 106, 274, 647, 1773, 4664, 13418, 38861, 118690, 370588, 1202924, 4006557, 13764760, 48517672, 175603676, 651026060, 2471150365, 9590103580, 38023295735, 153871104726, 635078474978, 2671365285303, 11444367926725, 49903627379427
Offset: 0

Views

Author

Gus Wiseman, Jun 16 2018

Keywords

Comments

A set-system is a finite set of finite nonempty sets (edges). The weight is the sum of cardinalities of the edges. Weight is generally not the same as number of vertices.

Examples

			Non-isomorphic representatives of the a(6) = 12 set-systems:
  {{1,2,3,4,5,6}}
  {{1,2},{3,4,5,6}}
  {{1,5},{2,3,4,5}}
  {{3,4},{1,2,3,4}}
  {{1,2,3},{4,5,6}}
  {{1,2,5},{3,4,5}}
  {{1,3,4},{2,3,4}}
  {{1,2},{1,3},{2,3}}
  {{1,2},{3,4},{5,6}}
  {{1,2},{3,5},{4,5}}
  {{1,3},{2,4},{3,4}}
  {{1,4},{2,4},{3,4}}
		

Crossrefs

Programs

  • PARI
    WeighT(v)={Vec(exp(x*Ser(dirmul(v, vector(#v, n, (-1)^(n-1)/n))))-1, -#v)}
    permcount(v) = {my(m=1, s=0, k=0, t); for(i=1, #v, t=v[i]; k=if(i>1&&t==v[i-1], k+1, 1); m*=t*k; s+=t); s!/m}
    K(q, t, k)={WeighT(Vec(sum(j=1, #q, my(g=gcd(t, q[j])); g*x^(q[j]/g)) + O(x*x^k), -k)) - Vec(sum(j=1, #q, if(t%q[j]==0, q[j])) + O(x*x^k), -k)}
    a(n)={if(n==0, 1, my(s=0); forpart(q=n, my(g=sum(t=1, n, subst(x*Ser(K(q, t, n\t)/t),x,x^t) )); s+=permcount(q)*polcoef(exp(g - subst(g,x,x^2)), n)); s/n!)} \\ Andrew Howroyd, Jan 16 2024

Formula

a(n) = A283877(n) - A330053(n). - Gus Wiseman, Dec 09 2019

Extensions

Terms a(11) and beyond from Andrew Howroyd, Sep 01 2019

A326753 Number of connected components of the set-system with BII-number n.

Original entry on oeis.org

0, 1, 1, 2, 1, 1, 1, 1, 1, 2, 2, 3, 2, 2, 2, 2, 1, 1, 2, 2, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 1, 1, 1, 2, 1, 2, 1, 1, 1, 1, 1, 2, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1
Offset: 0

Views

Author

Gus Wiseman, Jul 23 2019

Keywords

Comments

A binary index of n is any position of a 1 in its reversed binary expansion. The binary indices of n are row n of A048793. We define the set-system with BII-number n to be obtained by taking the binary indices of each binary index of n. Every finite set of finite nonempty sets has a different BII-number. For example, 18 has reversed binary expansion (0,1,0,0,1), and since the binary indices of 2 and 5 are {2} and {1,3} respectively, the BII-number of {{2},{1,3}} is 18. Elements of a set-system are sometimes called edges.

Examples

			The set-system {{1,2},{1,4},{3}} with BII-number 268 has two connected components, so a(268) = 2.
		

Crossrefs

Positions of 0's and 1's are A326749.
Ranking sequences using BII-numbers: A309314 (hyperforests), A326701 (set partitions), A326703 (chains), A326704 (antichains), A326750 (clutters), A326751 (blobs), A326752 (hypertrees), A326754 (covers).

Programs

  • Mathematica
    bpe[n_]:=Join@@Position[Reverse[IntegerDigits[n,2]],1];
    csm[s_]:=With[{c=Select[Tuples[Range[Length[s]],2],And[OrderedQ[#],UnsameQ@@#,Length[Intersection@@s[[#]]]>0]&]},If[c=={},s,csm[Sort[Append[Delete[s,List/@c[[1]]],Union@@s[[c[[1]]]]]]]]];
    Table[Length[csm[bpe/@bpe[n]]],{n,0,100}]
  • Python
    from sympy.utilities.iterables import connected_components
    def bin_i(n): #binary indices
        return([(i+1) for i, x in enumerate(bin(n)[2:][::-1]) if x =='1'])
    def A326753(n):
        E,a = [],[bin_i(k) for k in bin_i(n)]
        m = len(a)
        for i in range(m):
            for j in a[i]:
                for k in range(m):
                    if j in a[k]:
                        E.append((i,k))
        return(len(connected_components((list(range(m)),E)))) # John Tyler Rascoe, Jul 16 2024

Formula

a(A072639(n)) = n. - John Tyler Rascoe, Jul 15 2024

A261005 Number of unlabeled simplicial complexes with n nodes.

Original entry on oeis.org

1, 1, 2, 5, 20, 180, 16143, 489996795, 1392195548399980210, 789204635842035039135545297410259322
Offset: 0

Views

Author

N. J. A. Sloane, Aug 13 2015

Keywords

Comments

Also the number of non-isomorphic antichains of nonempty sets covering n vertices. The labeled case is A006126, except with a(0) = 1. - Gus Wiseman, Feb 23 2019

Examples

			From _Gus Wiseman_, Feb 23 2019: (Start)
Non-isomorphic representatives of the a(0) = 1 through a(4) = 20 antichains:
  {}  {{1}}  {{12}}    {{123}}         {{1234}}
             {{1}{2}}  {{1}{23}}       {{1}{234}}
                       {{13}{23}}      {{12}{34}}
                       {{1}{2}{3}}     {{14}{234}}
                       {{12}{13}{23}}  {{1}{2}{34}}
                                       {{134}{234}}
                                       {{1}{24}{34}}
                                       {{1}{2}{3}{4}}
                                       {{13}{24}{34}}
                                       {{14}{24}{34}}
                                       {{13}{14}{234}}
                                       {{12}{134}{234}}
                                       {{1}{23}{24}{34}}
                                       {{124}{134}{234}}
                                       {{12}{13}{24}{34}}
                                       {{14}{23}{24}{34}}
                                       {{12}{13}{14}{234}}
                                       {{123}{124}{134}{234}}
                                       {{13}{14}{23}{24}{34}}
                                       {{12}{13}{14}{23}{24}{34}}
(End)
		

References

  • Benoît Jubin, Posting to Sequence Fans Mailing List, Aug 12 2015.

Crossrefs

Apart from a(0), same as A006602, and after subtracting 1, A007411.

Formula

First differences of A306505. - Gus Wiseman, Feb 23 2019
a(n) = A003182(n) - A003182(n-1) for n > 0. - Andrew Howroyd, May 28 2023

Extensions

a(8)-a(9) added using A003182 by Andrew Howroyd, May 28 2023

A307249 Number of simplicial complexes with n nodes.

Original entry on oeis.org

1, 1, 2, 9, 114, 6894, 7785062, 2414627396434, 56130437209370320359966, 286386577668298410623295216696338374471993
Offset: 0

Views

Author

Gus Wiseman, Mar 31 2019

Keywords

Comments

Except for a(0) = 1, this is also the number of antichains of nonempty sets covering n vertices (A006126). There are two antichains of size zero, namely {} and {{}}, while there is only one simplicial complex, namely {}. The unlabeled case is A261005. The non-covering case is A014466.

Examples

			Maximal simplices of the a(0) = 1 through a(3) = 9 simplicial complexes:
  {}    {{1}}  {{12}}    {{123}}
               {{1}{2}}  {{1}{23}}
                         {{2}{13}}
                         {{3}{12}}
                         {{12}{13}}
                         {{12}{23}}
                         {{13}{23}}
                         {{1}{2}{3}}
                         {{12}{13}{23}}
		

Crossrefs

Programs

  • Mathematica
    nn=5;
    stableSets[u_,Q_]:=If[Length[u]===0,{{}},With[{w=First[u]},Join[stableSets[DeleteCases[u,w],Q],Prepend[#,w]&/@stableSets[DeleteCases[u,r_/;r===w||Q[r,w]||Q[w,r]],Q]]]];
    Table[Length[stableSets[Subsets[Range[n],{2,n}],SubsetQ]],{n,0,nn}]

Formula

Inverse binomial transform of A014466.

Extensions

a(9) from Dmitry I. Ignatov, Nov 25 2023

A293994 Number of unlabeled multiset clutters of weight n.

Original entry on oeis.org

1, 1, 2, 3, 7, 13, 39, 88, 265
Offset: 0

Views

Author

Gus Wiseman, Oct 21 2017

Keywords

Comments

A multiset clutter is a connected antichain of finite multisets. The weight of a multiset clutter is the sum of cardinalities (counting multiplicity) of its edges.

Examples

			Non-isomorphic representatives of the a(5) = 13 multiset clutters are:
((11111)), ((11112)), ((11122)), ((11123)), ((11223)), ((11234)), ((12345)), ((11)(122)), ((11)(123)), ((12)(111)), ((12)(113)), ((12)(134)), ((13)(122)).
		

Crossrefs

A006602 a(n) is the number of hierarchical models on n unlabeled factors or variables with linear terms forced.

Original entry on oeis.org

2, 1, 2, 5, 20, 180, 16143, 489996795, 1392195548399980210, 789204635842035039135545297410259322
Offset: 0

Views

Author

Keywords

Comments

Also number of pure (= irreducible) group-testing histories of n items - A. Boneh, Mar 31 2000
Also number of antichain covers of an unlabeled n-set, so a(n) equals first differences of A003182. - Vladeta Jovovic, Goran Kilibarda, Aug 18 2000
Also number of inequivalent (under permutation of variables) nondegenerate monotone Boolean functions of n variables. We say h and g (functions of n variables) are equivalent if there exists a permutation p of S_n such that hp=g. E.g., a(3)=5 because xyz, xy+xz+yz, x+yz+xyz, xy+xz+xyz, x+y+z+xy+xz+yz+xyz are 5 inequivalent nondegenerate monotone Boolean functions that generate (by permutation of variables) the other 4. For example, y+xz+xyz can be obtained from x+yz+xyz by exchanging x and y. - Alan Veliz-Cuba (alanavc(AT)vt.edu), Jun 16 2006
The non-spanning/covering case is A003182. The labeled case is A006126. - Gus Wiseman, Feb 20 2019

Examples

			From _Gus Wiseman_, Feb 20 2019: (Start)
Non-isomorphic representatives of the a(0) = 2 through a(4) = 20 antichains:
  {}    {{1}}  {{12}}    {{123}}         {{1234}}
  {{}}         {{1}{2}}  {{1}{23}}       {{1}{234}}
                         {{13}{23}}      {{12}{34}}
                         {{1}{2}{3}}     {{14}{234}}
                         {{12}{13}{23}}  {{1}{2}{34}}
                                         {{134}{234}}
                                         {{1}{24}{34}}
                                         {{1}{2}{3}{4}}
                                         {{13}{24}{34}}
                                         {{14}{24}{34}}
                                         {{13}{14}{234}}
                                         {{12}{134}{234}}
                                         {{1}{23}{24}{34}}
                                         {{124}{134}{234}}
                                         {{12}{13}{24}{34}}
                                         {{14}{23}{24}{34}}
                                         {{12}{13}{14}{234}}
                                         {{123}{124}{134}{234}}
                                         {{13}{14}{23}{24}{34}}
                                         {{12}{13}{14}{23}{24}{34}}
(End)
		

References

  • Y. M. M. Bishop, S. E. Fienberg and P. W. Holland, Discrete Multivariate Analysis. MIT Press, 1975, p. 34. [In part (e), the Hierarchy Principle for log-linear models is defined. It essentially says that if a higher-order parameter term is included in the log-linear model, then all the lower-order parameter terms should also be included. - Petros Hadjicostas, Apr 10 2020]
  • V. Jovovic and G. Kilibarda, On enumeration of the class of all monotone Boolean functions, in preparation.
  • A. A. Mcintosh, personal communication.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Formula

a(n) = A007411(n) + 1.
First differences of A003182. - Gus Wiseman, Feb 23 2019

Extensions

a(6) from A. Boneh, 32 Hantkeh St., Haifa 34608, Israel, Mar 31 2000
Entry revised by N. J. A. Sloane, Jul 23 2006
a(7) from A007411 and A003182. - N. J. A. Sloane, Aug 13 2015
Named edited by Petros Hadjicostas, Apr 08 2020
a(8) from A003182. - Bartlomiej Pawelski, Nov 27 2022
a(9) from A007411. - Dmitry I. Ignatov, Nov 27 2023

A306006 Number of non-isomorphic intersecting set-systems of weight n.

Original entry on oeis.org

1, 1, 1, 2, 3, 5, 10, 16, 30, 57, 109, 209, 431, 873, 1850, 3979, 8819, 19863
Offset: 0

Views

Author

Gus Wiseman, Jun 16 2018

Keywords

Comments

An intersecting set-system S is a finite set of finite nonempty sets (edges), any two of which have a nonempty intersection. The weight of S is the sum of cardinalities of its elements. Weight is generally not the same as number of vertices.

Examples

			Non-isomorphic representatives of the a(6) = 10 set-systems:
{{1,2,3,4,5,6}}
{{5},{1,2,3,4,5}}
{{1,5},{2,3,4,5}}
{{3,4},{1,2,3,4}}
{{1,2,5},{3,4,5}}
{{1,3,4},{2,3,4}}
{{3},{2,3},{1,2,3}}
{{4},{1,4},{2,3,4}}
{{1,2},{1,3},{2,3}}
{{1,4},{2,4},{3,4}}
		

Crossrefs

Extensions

a(10)-a(17) from Bert Dobbelaere, May 04 2025

A303837 Number of z-trees with least common multiple n > 1.

Original entry on oeis.org

0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 2, 1, 1, 1, 3, 1, 1, 1, 2, 1, 4, 1, 1, 1, 1, 1, 4, 1, 1, 1, 3, 1, 4, 1, 2, 2, 1, 1, 4, 1, 2, 1, 2, 1, 3, 1, 3, 1, 1, 1, 10, 1, 1, 2, 1, 1, 4, 1, 2, 1, 4, 1, 6, 1, 1, 2, 2, 1, 4, 1, 4, 1, 1, 1, 10, 1, 1, 1
Offset: 1

Views

Author

Gus Wiseman, May 19 2018

Keywords

Comments

Given a finite set S of positive integers greater than 1, let G(S) be the simple labeled graph with vertex set S and edges between any two vertices that have a common divisor greater than 1. For example, G({6,14,15,35}) is a 4-cycle. A set S is said to be connected if G(S) is a connected graph. The clutter density of S is defined to be Sum_{s in S} (omega(s) - 1) - omega(LCM(S)), where omega = A001221 and LCM is least common multiple. Then a z-tree is a finite connected set of pairwise indivisible positive integers greater than 1 with clutter density -1.
This is a generalization to multiset systems of the usual definition of hypertree (viz. connected hypergraph F such that two distinct hyperedges of F intersect in at most a common vertex and such that every cycle of F is contained in a hyperedge).
If n is squarefree with k prime factors, then a(n) = A030019(k).

Examples

			The a(72) = 6 z-trees together with the corresponding multiset systems (see A112798, A302242) are the following.
      (72): {{1,1,1,2,2}}
    (8,18): {{1,1,1},{1,2,2}}
    (8,36): {{1,1,1},{1,1,2,2}}
    (9,24): {{2,2},{1,1,1,2}}
   (6,8,9): {{1,2},{1,1,1},{2,2}}
  (8,9,12): {{1,1,1},{2,2},{1,1,2}}
The a(60) = 10 z-trees together with the corresponding multiset systems are the following.
       (60): {{1,1,2,3}}
     (4,30): {{1,1},{1,2,3}}
     (6,20): {{1,2},{1,1,3}}
    (10,12): {{1,3},{1,1,2}}
    (12,15): {{1,1,2},{2,3}}
    (12,20): {{1,1,2},{1,1,3}}
    (15,20): {{2,3},{1,1,3}}
   (4,6,10): {{1,1},{1,2},{1,3}}
   (4,6,15): {{1,1},{1,2},{2,3}}
  (4,10,15): {{1,1},{1,3},{2,3}}
		

Crossrefs

Programs

  • Mathematica
    zsm[s_]:=With[{c=Select[Tuples[Range[Length[s]],2],And[Less@@#,GCD@@s[[#]]]>1&]},If[c=={},s,zsm[Union[Append[Delete[s,List/@c[[1]]],LCM@@s[[c[[1]]]]]]]]];
    zensity[s_]:=Total[(PrimeNu[#]-1&)/@s]-PrimeNu[LCM@@s];
    Table[Length[Select[Rest[Subsets[Rest[Divisors[n]]]],And[zensity[#]==-1,zsm[#]=={n},Select[Tuples[#,2],UnsameQ@@#&&Divisible@@#&]=={}]&]],{n,2,50}]

A261006 Number of unlabeled connected simplicial complexes with n nodes.

Original entry on oeis.org

1, 1, 1, 3, 14, 157, 15942, 489980450, 1392195547909966848, 789204635842035012967539870068113408
Offset: 0

Views

Author

N. J. A. Sloane, Aug 13 2015

Keywords

Comments

Inverse Euler transform of A261005 (omitting the a(0) term from A261005).
a(0) could equally well be taken to be 0.

References

  • Benoît Jubin, Posting to Sequence Fans Mailing List, Aug 12 2015

Crossrefs

Extensions

a(8)-a(9) from Dmitry I. Ignatov, Nov 26 2023
Previous Showing 21-30 of 148 results. Next