cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-14 of 14 results.

A306915 Square array A(n,k), n >= 0, k >= 1, read by antidiagonals, where column k is the expansion of g.f. 1/((1-x)^k-x^k).

Original entry on oeis.org

1, 1, 2, 1, 2, 4, 1, 3, 4, 8, 1, 4, 6, 8, 16, 1, 5, 10, 11, 16, 32, 1, 6, 15, 20, 21, 32, 64, 1, 7, 21, 35, 36, 42, 64, 128, 1, 8, 28, 56, 70, 64, 85, 128, 256, 1, 9, 36, 84, 126, 127, 120, 171, 256, 512, 1, 10, 45, 120, 210, 252, 220, 240, 342, 512, 1024
Offset: 0

Views

Author

Seiichi Manyama, Mar 16 2019

Keywords

Examples

			Square array begins:
     1,   1,   1,   1,   1,    1,    1,    1, ...
     2,   2,   3,   4,   5,    6,    7,    8, ...
     4,   4,   6,  10,  15,   21,   28,   36, ...
     8,   8,  11,  20,  35,   56,   84,  120, ...
    16,  16,  21,  36,  70,  126,  210,  330, ...
    32,  32,  42,  64, 127,  252,  462,  792, ...
    64,  64,  85, 120, 220,  463,  924, 1716, ...
   128, 128, 171, 240, 385,  804, 1717, 3432, ...
   256, 256, 342, 496, 715, 1365, 3017, 6436, ...
		

Crossrefs

Programs

  • Mathematica
    A[n_, k_] := Sum[Binomial[n + k - 1, k*j + k - 1], {j, 0, Floor[n/k]}]; Table[A[n - k, k], {n, 0, 11}, {k, n, 1, -1}] // Flatten (* Amiram Eldar, May 25 2021 *)

Formula

A(n,k) = Sum_{j=0..floor(n/k)} binomial(n+k-1,k*j+k-1).
A(n,2*k) = Sum_{i=0..n} Sum_{j=0..n-i} binomial(i+k-1,k*j+k-1) * binomial(n-i+k-1,k*j+k-1). - Seiichi Manyama, Apr 07 2019

A078789 Expansion of (1-4*x+2*x^2)/(1-7*x+13*x^2-4*x^3).

Original entry on oeis.org

1, 3, 10, 35, 127, 474, 1807, 6995, 27370, 107883, 427351, 1698458, 6765175, 26985675, 107746282, 430470899, 1720537327, 6878624730, 27505271455, 109996928003, 439924466026, 1759532283963, 7037695641415, 28149647662490, 112595619434887, 450374698997499
Offset: 0

Views

Author

Michael Somos, Dec 03 2002

Keywords

Comments

Number of walks of length 2*n+1 between two adjacent vertices in the cycle graph C_10. - Herbert Kociemba, Jul 02 2004
Also, with offset 1, the cogrowth sequence of the 20-element group D10 = . - Sean A. Irvine, Nov 20 2024

Crossrefs

Programs

  • Magma
    I:=[1,3,10]; [n le 3 select I[n] else 7*Self(n-1)-13*Self(n-2)+4*Self(n-3): n in [1..30]]; // Vincenzo Librandi, Dec 18 2018
  • Mathematica
    LinearRecurrence[{7, -13, 4}, {1, 3, 10}, 25] (* Vincenzo Librandi, Dec 18 2018 *)
    CoefficientList[Series[(1-4x+2x^2)/(1-7x+13x^2-4x^3),{x,0,40}],x] (* Harvey P. Dale, Feb 17 2024 *)
  • PARI
    {a(n) = polcoeff( (1 - 4*x + 2*x^2) / (1 - 7*x + 13*x^2 - 4*x^3) + x * O(x^n), n)}
    
  • PARI
    {a(n) = sum( k=-n\5, n\5, binomial(2*n + 1, n+1 + 5*k))}
    

Formula

G.f.: (1 - 4*x + 2*x^2) / (1 - 7*x + 13*x^2 - 4*x^3).
a(5*n + 3) = A049016(10*n + 3), a(5*n + 4) = A049016(10*n + 5).
From Herbert Kociemba, Jul 02 2004: (Start)
a(n) = [4^(n+1) + (sqrt(5)+3)*phi^(2n) - (sqrt(5)-3)*phi^(-2n)]/10, where phi is the golden ratio (1+sqrt(5))/2.
a(n) = 7a(n-1)-13a(n-2)+4a(n-3). (End)
a(n) = Sum_{k= -floor(n/5)..floor(n/5)} binomial(2*n,n+5*k)/2 = ((3+sqrt(5))^n + (3-sqrt(5))^n + 2^(3*n-1))/(5*2^n). - Mircea Merca, Jan 28 2012
a(n) = (Lucas(2*n+2) + 2^(2*n+1))/5. - Greg Dresden, Jan 26 2023

A140344 Catalan triangle A009766 prepended by n zeros in its n-th row.

Original entry on oeis.org

1, 0, 1, 1, 0, 0, 1, 2, 2, 0, 0, 0, 1, 3, 5, 5, 0, 0, 0, 0, 1, 4, 9, 14, 14, 0, 0, 0, 0, 0, 1, 5, 14, 28, 42, 42, 0, 0, 0, 0, 0, 0, 1, 6, 20, 48, 90, 132, 132, 0, 0, 0, 0, 0, 0, 0, 1, 7, 27, 75, 165, 297, 429, 429, 0, 0, 0, 0, 0, 0, 0, 0, 1, 8, 35, 110, 275, 572, 1001, 1430, 1430
Offset: 0

Views

Author

Paul Curtz, May 29 2008

Keywords

Comments

The triangle's n-th row is also related to recurrences for sequences f(n) which p-th differences, p=n+2: The denominator of the generating function contains a factor 1-2x in these cases.
This factor may be "lifted" either by looking at auxiliary sequences f(n+1)-2f(n) or by considering the corresponding "degenerate" shorter recurrences right away. In the case p=4, the recurrence is f(n)=4f(n-1)-6f(n-2)+4f(n-3) from the 4th row in A135356, the denominator in the g.f. is 1-4x+6x^2-4x^3=(1-2x)(1-2x+2x^2), which yields the degenerate recurrence f(n)=2f(n-1)-2f(n-2) from the 2nd factor and leaves the first three coefficients of 1/(1-2x+2x^2)=1+2x+2x^2+.. in row 2.
A000749 is an example which follows the recurrence but not the degenerate recurrence, but still A000749(n+1)-2A000749(n) = 0, 0, 1, 2, 2,.. starts with the 3 coefficients. A009545 follows both recurrences and starts with the three nonzero terms because there is only a power of x in the numerator of the g.f.
In the case p=5, the recurrence is f(n)=5f(n-1)-10f(n-2)+10f(n-3)-5f(n-4)+2f(n-5), the denominator in the g.f. is 1-5x+10x^2-10x^3+5x^4-2x^5= (1-2x)(1-3x+4x^2-2x^3+x^4), where 1/(1-3x+4x^2-2x^3+x^4) = 1+3x+5x^2+5x^3+... and the 4 coefficients populate row 3.
A049016 obeys the main recurrence but not the degenerate recurrence f(n)=3f(n-1)-4f(n-2)+2f(n-3)-f(n-4), yet A049016(n+1)-2A049016(n)=1, 3, 5, 5,.. starts with the 4 coefficients. A138112 obeys both recurrences and is constructed to start with the 4 coefficients themselves.
In the nomenclature of Foata and Han, this is the doubloon polynomial triangle d_{n,m}(0), up to index shifts. - R. J. Mathar, Jan 27 2011

Examples

			Triangle starts
1;
0,1,1;
0,0,1,2,2;
0,0,0,1,3,5,5;
0,0,0,0,1,4,9,14,14;
		

Crossrefs

Cf. A135356, A130020, A139687, A140343 (p=6), A140342 (p=7).

Programs

  • Mathematica
    Table[Join[Array[0&, n], Table[Binomial[n+k, n]*(n-k+1)/(n+1), {k, 0, n}]], {n, 0, 8}] // Flatten (* Jean-François Alcover, Dec 16 2014 *)

Extensions

Edited by R. J. Mathar, Jul 10 2008

A085476 Periodic Pascal array, read by upward antidiagonals.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 3, 1, 1, 1, 1, 4, 3, 1, 1, 1, 1, 5, 6, 1, 2, 1, 1, 1, 6, 10, 4, 1, 1, 1, 1, 1, 7, 15, 10, 1, 3, 1, 1, 1, 1, 8, 21, 20, 5, 1, 3, 2, 1, 1, 1, 9, 28, 35, 15, 1, 4, 1, 1, 1, 1, 1, 10, 36, 56, 35, 6, 1, 6, 1, 1, 1, 1
Offset: 0

Views

Author

Paul Barry, Jul 02 2003

Keywords

Comments

G.f. of binomial transform of n-th row is given by 1/((1-x)^(n+1)-x^(n+1)).

Examples

			Rows begin:
n\k | 0 1 2 3 4 5
----+------------
  0 | 1 1 1 1 1 1 ...
  1 | 1 1 1 1 1 1 ...
  2 | 1 2 1 1 2 1 ...
  3 | 1 3 3 1 1 3 ...
  4 | 1 4 6 4 1 1 ...
		

Crossrefs

Programs

Formula

Square array T(n, k) = C(n, k mod (n+1)).
Previous Showing 11-14 of 14 results.